
C Programming

Exercises With Arrays and Strings

1 Background

Arrays are collections of elements. The elements go into memory, one after the other. If
an array is declared as int array [5] then there are five elements; the first is array [0], the
last is array [4].

1.1 Initialialising an Array

You can initialise an array when you define the array:

int array [5] = { 10, 20, 30, 40, 50 };

but you cannot assign multiple values to an array after you have defined it:

int array [5];
array = { 10, 20, 30, 40, 50 }; // BIG ERROR!

Notice the difference between the terms assign and initialise.

1.2 Assigning to elements of an array

After the array is defined, we can assign values to individual elements:

int array [5];
array [0] = 10;
array [1] = 20;
array [2] = 30;
array [3] = 40;
array [4] = 50;

and we can use these elements just as we would an ordinary variable:

printf ("The third element is %d\n", array [2]);

However, there the only real advantage of using arrays is so that we can use loops to
process them. You could imagine how silly it would be to write a program to fill all
elements of this array with tens:

int tens[10000];
tens[0] = 10;
tens[1] = 20;
// . . . 9997 more assignments . . .
tens[9999] = 100000;

Nick Urbanik <nicku(at)nicku.org> ver. 1.0

<nicku(at)nicku.org>

Exercises With Arrays and Strings
C Programming 2

It would be much smarter to use a loop. With arrays, we usually use for loops. We could
fill our tens[] array with this for loop:

int i, tens[10000];
for (i = 0; i < 10000; ++i)

tens[i] = (i + 1) * 10;

Notice that we could use a while loop to do the same thing:

int tens[10000];
int i = 0;
while (i < 10000) {

tens[i] = (i + 1) * 10;
++i ;

}

1.3 Comparing for and while loops

for loop:

for (〈init〉; 〈test〉; 〈update〉) {
〈body of loop〉

}

example:

for (int i = 0; i < 5; ++i)
printf ("%d\n", array [i]);

while loop:

〈init〉;
while (〈test〉) {

〈body of loop〉
〈update〉;

}

example:

int i = 0;
while (i < 5) {

printf ("%d\n", array [i]);
++i ;

}

2 Strings

In the C programming language, a string is just an array of characters:

char string [8000];

2.1 The null character marks the end of a string

The string library routines (such as strlen()) assume that there is a null character ’\0’

at the end of each string. The null character is used as a marker to see where the end of
the string is.

You always need to leave room for the null character. The declaration of string [] above
can hold a string with a maximum of 7999 characters, since the last character in the array
should be the null character.

It is okay to have some of the string unused:

char string [8000] = "Hello";

Nick Urbanik <nicku(at)nicku.org> ver. 1.0

<nicku(at)nicku.org>

Exercises With Arrays and Strings
C Programming 3

2.2 Printing strings

printf () can print a string using the "%s" format string:

printf ("The string contains %s\n", string);

The output if string still contains "Hello" is:

The string contains Hello

2.3 Finding the length of a string

To find out how many characters there are in a string, you can use the string library
function strlen(). You need to #include <string.h> to use strlen().

If the string string defined above is initialised as shown, then

printf ("String length of %s is %d\n", string, strlen(string));

The output would be:

String length of Hello is 5

3 Exercises

1. Write a program that defines the array

int array [5];

and which initialises it so that each element holds a value equal to its own index.

2. Write a program that defines the array

int array [5];

and which assigns values to its elements so that each element holds a value equal
to its own index, without using a loop.

3. Write a program that defines the array

int array [5];

and which assigns values to its elements so that each element holds a value equal
to its own index, using a for loop.

4. Write a program that defines the array

int array [5];

and which assigns values to its elements so that each element holds a value equal
to its own index, using a while loop.

5. Write a program to that defines the string

char name[8000];

and reads a line of text from standard input using the Standard I/O library function
gets(), then prints it out to standard output.

6. Modify your program to loop through each character of the string and print out each
character individually using putchar(). Again, don’t forget to #include <stdio.h>.

Nick Urbanik <nicku(at)nicku.org> ver. 1.0

<nicku(at)nicku.org>

	Background
	Initialialising an Array
	Assigning to elements of an array
	Comparing for and while loops

	Strings
	The null character marks the end of a string
	Printing strings
	Finding the length of a string

	Exercises

