
Deadlock

How to Prevent It

Nick Urbanik <nicku(at)nicku.org>

Copyright Conditions: GNU FDL (see http://www.gnu.org/licenses/fdl.html)

A computing department

OSSI — Deadlock — ver. 1.1 – p. 1/26

http://www.gnu.org/licenses/fdl.html


Deadlock

What is deadlock?

How do we prevent it?

Reference:

William Stallings, Operating Systems and Design

Principles, 4th Edition, 2001, Chapter 6

OSSI — Deadlock — ver. 1.1 – p. 2/26



What is deadlock?

A set of processes or threads is in deadlock if:

Each process is waiting for something that can only be
offered by another process in the set.

The set of processes is stuck

To the user, they appear to have hung

OSSI — Deadlock — ver. 1.1 – p. 3/26



Concurrent Systems

A concurrent system is one where more than one
process or thread is executing at the same time

I.e., is running or is ready to run

Examples:

operating system

multiprocessing application (e.g., Apache 1.3.x)

multithreaded application (e.g., Apache 2.x.x)

Deadlock can occur in a concurrent system

OSSI — Deadlock — ver. 1.1 – p. 4/26



Starvation

Starvation is a second danger for concurrent systems
besides deadlock

Involves a process not getting access to a resource
because other processes are unfairly granted access

We do not discuss starvation further here.

OSSI — Deadlock — ver. 1.1 – p. 5/26



Gridlock on physical road

Deadlock is like gridlock at an intersection

Cars cannot move forward, because the space in front
is occupied by another car

Cannot move back

Very similar to deadlock in OS

OSSI — Deadlock — ver. 1.1 – p. 6/26



Gridlock — 2

OSSI — Deadlock — ver. 1.1 – p. 7/26



Requirements for Deadlock

Mutual exclusion

only one process can use a resource at one time

result of locking access to the resource

Hold and Wait

Processes in the set holding resources given earlier
can request new resources

No Preemption

Resources given to process cannot be taken away
forcibly by OS or other process

the process needs to surrender the resource itself

Circular Wait

Each process is waiting for a resource held by
another process in the set (the actual deadlock)

OSSI — Deadlock — ver. 1.1 – p. 8/26



Deadlock Avoidance

The first three conditions are necessary for deadlock to
occur

The fourth condition can result because the first three
are true

A set of processes can reach an unsafe state where
deadlock is possible

Deadlock avoidance involves detecting unsafe states
and not allocating resources that would cause an
unsafe state

We do not investigate deadlock avoidance here.

Need balance cost of deadlock against cost of
preventing it

OSSI — Deadlock — ver. 1.1 – p. 9/26



Two processes that can deadlock

Process P

. . .

Get A

. . .

Get B

. . .

Release A

. . .

Release B

. . .

Process Q

. . .

Get B

. . .

Get A

. . .

Release B

. . .

Release A

. . .

OSSI — Deadlock — ver. 1.1 – p. 10/26



Deadlock Example — 2

A

require

Get A Get B Release BRelease A

Get A

Get B

Release A

Release B

require A

require Bprocess Q
Preogress of

5

6

3

4 5

2

2

1

B

require

Progress
of
Process P

P and Q
want A

P and Q
want B

1. Only Q executes.

6. Only P executes.

2. Q gets B, then A. P

blocks waiting for A,

resumes after Q

releases A

5. P gets A, then B. Q

blocks waiting for B,

resumes after P re-

leases B

OSSI — Deadlock — ver. 1.1 – p. 11/26



Deadlock Example — 3

Path 1: only Q executes, no deadlock

Path 6: only P executes, no deadlock

Path 2: Q gets B, then A. P executes, blocks waiting for
A, resumes after Q releases A. No deadlock.

Path 5: P gets A, then B. Q executes, blocks waiting for
B, resumes after P releases B. No deadlock.

OSSI — Deadlock — ver. 1.1 – p. 12/26



Deadlock Example — 4

No problem if only P or Q executing

No problem if Q gets B then A, P executes, but blocks
waiting for A. Q releases A and B. P can then run OK

No problem if either process gets both resources before
the other starts.

OSSI — Deadlock — ver. 1.1 – p. 13/26



Deadlock Example — 5

But if:

Q gets B, then P gets A (Path 3), or

P gets A, then Q gets B (Path 4)

Deadlock must happen since both will block waiting for
the other.

OSSI — Deadlock — ver. 1.1 – p. 14/26



How to prevent deadlock?

Two main methods:

Indirect method: prevent one of the first three
conditions

Direct method:

Prevent the last condition.

All methods of prevention may have some cost in

execution time, or

more limited access to resources

design and programming time

OSSI — Deadlock — ver. 1.1 – p. 15/26



Indirect: preventing mutual exclusion

This condition depends on the nature of the resource.

If resource must be locked, then the OS must support
mutual exclusion.

If concurrent processes share data, there is a
danger of data corruption

i.e., two or more threads both write to same file at
the same time

OSSI — Deadlock — ver. 1.1 – p. 16/26



Indirect: prevent hold & wait — 1

Process does not proceed until allocated all resources it
will ever need.

Wasteful, since:

process may wait much longer for all resources
rather than enough to start with.

Resources locked while not being used.

OSSI — Deadlock — ver. 1.1 – p. 17/26



Indirect: prevent hold & wait — 2

Another way to prevent hold and wait:

Process holds only one resource at one time

Example: modify P as shown

Note no deadlock possible even if do not change Q

OSSI — Deadlock — ver. 1.1 – p. 18/26



Indirect: prevent hold & wait — 3

Another strategy is for a thread or process to test if
additional resources are available before waiting for
them

If any resource is not available,

then release all resources,

yield the CPU and then try again
yield = give up, i.e, thread voluntarily goes to the
end of the scheduler queue for threads of its own
priority
means another thread gets the CPU instead

See backoff.c from Programming with POSIX
Threads, pp. 67–69

OSSI — Deadlock — ver. 1.1 – p. 19/26



Indirect: prevent hold & wait 3

Process P

. . .

Get A

. . .

Release A

. . .

Get B

. . .

Release B

. . .

Process Q

. . .

Get B

. . .

Get A

. . .

Release B

. . .

Release A

. . .

OSSI — Deadlock — ver. 1.1 – p. 20/26



Indirect: prevent hold & wait 4

A

require

Get A

Get A

Get B

Release A

Release B

process Q
Preogress of

Release A Get B Release B

require B

3

2

1

2

4

4 5 6

5

3

3

B

require

require A

Progress
of
process P

P and Q
want A

P and Q
want B

some paths result in

P or Q being

temporarily blocked

but the other process

can always complete

no chance of dead-

lock

OSSI — Deadlock — ver. 1.1 – p. 21/26



Indirect: allow preemption

OS or concurrent application could order a hierarchy of
processes

Highest priority could always get resources used by a
lower priority process.

Drawback: must be able to resume the preempted task
at the point where the resource was taken away.

OSSI — Deadlock — ver. 1.1 – p. 22/26



Direct: prevent circular wait

Define an order in which resources are always
requested

For example, in previous example, if always allocate A
then B, no deadlock can occur.

This method is a part of strategy used in Linux and
Windows operating system design

OSSI — Deadlock — ver. 1.1 – p. 23/26



Direct: prevent circular wait — 2

Process P

. . .

Get A

. . .

Get B

. . .

Release A

. . .

Release B

. . .

Process Q

. . .

Get A

. . .

Get B

. . .

Release A

. . .

Release B

. . .

OSSI — Deadlock — ver. 1.1 – p. 24/26



Direct: prevent circular wait — 3

require

B

Get A Get B Release BRelease A

require A

require Bprocess Q
Preogress of

Get A

Get B

Release A

Release B

6

4

5

4 5

3

2

32

1

A
require

Progress
of
Process P

P and Q
want B

P and Q
want A

some paths result in

P or Q being

temporarily blocked

but the other process

can always complete

again, no possibility

of deadlock

OSSI — Deadlock — ver. 1.1 – p. 25/26



Conclusion

Deadlock is very undesirable

Occurs within a set of processes or threads

The processes “lock up”, each process waiting for the
other.

4 conditions all required for deadlock

deadlock avoidance detects and avoids unsafe states

Prevention involves removing/preventing one or more of
these conditions

OSSI — Deadlock — ver. 1.1 – p. 26/26


	Deadlock
	What is deadlock?
	Concurrent Systems
	Starvation
	Gridlock on physical road
	Gridlock --- 2
	Requirements for Deadlock
	Deadlock Avoidance
	Two processes that can deadlock
	Deadlock Example --- 2
	Deadlock Example --- 3
	Deadlock Example --- 4
	Deadlock Example --- 5
	How to prevent deadlock?
	Indirect: preventing mutual exclusion
	Indirect: prevent hold & wait --- 1
	Indirect: prevent hold & wait --- 2
	Indirect: prevent hold & wait --- 3
	Indirect: prevent hold & wait 3
	Indirect: prevent hold & wait 4
	Indirect: allow preemption
	Direct: prevent circular wait
	Direct: prevent circular wait --- 2
	Direct: prevent circular wait --- 3
	Conclusion

