Deadlock
How to Prevent It

Nick Urbanik <nicku (at)nicku.org>
Copyright Conditions: GNU FDL (see http://www.gnu.org/licenses/fdl.html)

A computing department

|

0OSS| — Deadlock — ver. 1.1 —p. 1/26

http://www.gnu.org/licenses/fdl.html

Deadlock

What is deadlock?
How do we prevent it?

Reference:

William Stallings, Operating Systems and Design
Principles, 4th Edition, 2001, Chapter 6

o |

What is deadlock?

- N

A set of processes or threads is in deadlock if:

Each process is waiting for something that can only be
offered by another process in the set.

The set of processes is stuck
To the user, they appear to have hung

o |

0OSS| — Deadlock — ver. 1.1 — p. 3/26

Concurrent Systems

- N

#® A concurrent system is one where more than one
process or thread is executing at the same time

s l.e.,is running or is ready to run
Examples:

s oOperating system

s multiprocessing application (e.g., Apache 1.3.x)
s multithreaded application (e.g., Apache 2.x.x)

o Deadlock can occur in a concurrent system

o |

0OSS| — Deadlock — ver. 1.1 —p. 4/26

Starvation

f’ Starvation is a second danger for concurrent systems T
besides deadlock

® Involves
because

® We do not discuss starvation further here.

o |

0OSS| — Deadlock — ver. 1.1 — p. 5/26

Gridlock on physical road
f.o Deadlock is like gridlock at an intersection T

Cars cannot move forward, because the space in front
IS occupied by another car

o Cannot move back
o \ery similar to deadlock in OS

o |

0OSS| — Deadlock — ver. 1.1 — p. 6/26

Gridlock — 2

InRinE|

Requirements for Deadlock

-

Mutual exclusion
s only one process can use a resource at one time
s result of locking access to the resource

Hold and Wait
s Processes in the set holding resources given earlier
can request new resources
No Preemption

s Resources given to process cannot be taken away
forcibly by OS or other process

s the process needs to surrender the resource itself

® Circular Wait

s Each process is waiting for a resource held by
L another process in the set (the actual deadlock) J

0OSS| — Deadlock — ver. 1.1 —= p. 8/26

Deadlock Avoidance

-

The first three conditions are necessary for deadlock to
occur

The fourth condition can result because the first three
are true

A set of processes can reach an unsafe state where
deadlock is possible

Deadlock avoidance involves detecting unsafe states
and not allocating resources that would cause an
unsafe state

K

Need balance cost of deadlock against cost of
preventing it

|

0OSS| — Deadlock — ver. 1.1 — p. 9/26

Two processes that can deadlock

- N

Process P Process Q
Get A Get B
Get B Get A
Release A Release B
Release B Release A

0OSS| — Deadlock — ver. 1.1 —=p. 10/26

-

o

Deadlock Example — 2

Preogress of

process Q require B

Release ARARRARR AR RRAR AR R AN
l SNONONINNINANNNNNNINNN]

ARARARN Eul NOAXRY

NNNNNNNANN N XN\

ARRRAR RN ARANARRRY

ARRARARRN N\\]

ARARARRARRRARIRRARRARRRARY
ARARRRRRARRARRARRAR RN

ARARRARRRRRRAR AR AR R

Release B S N A ABBAAAAA

Get A

Get B

ARRRRN

AR
[X

Get A

Get B

Release A

_/Y\J

require A

6

require

A

require

B

—» Progress

Releas&B

Process P

-kt
[]

6.

Only Q executes.
Only P executes.

Q gets B, then A. P
blocks waiting for A,
resumes after Q
releases A

P gets A, then B. Q
blocks waiting for B,
resumes after P re-

leases B

0OSS| — Deadlock — ver. 1.1 —p. 11/26

|

Deadlock Example — 3

- N

o Path 1: only Q executes, no deadlock
Path 6: only P executes, no deadlock

o Path 2: Q gets B, then A. P executes, blocks waiting for
A, resumes after Q releases A. No deadlock.

o Path 5: P gets A, then B. Q executes, blocks waiting for
B, resumes after P releases B. No deadlock.

o |

0OSS| — Deadlock — ver. 1.1 —p. 12/26

Deadlock Example — 4
f’ No problem if only P or Q executing T

o No problem if Q gets B then A, P executes, but blocks
waiting for A. Q releases A and B. P can then run OK

No problem if either process gets both resources before
the other starts.

o |

0OSS| — Deadlock — ver. 1.1 — p. 13/26

Deadlock Example — 5
ﬁ.o But if: T
o Q gets B, then P gets A (Path 3), or
P gets A, then Q gets B (Path 4)

o Deadlock must happen since both will block waiting for
the other.

o |

0OSS| — Deadlock — ver. 1.1 —p. 14/26

How to prevent deadlock?

-

#® Two main methods:
s Indirect method: prevent one of the first three
conditions
#® Direct method:
» Prevent the last condition.

o All methods of prevention may have some cost in
s execution time, or
s more limited access to resources
s design and programming time

0OSS| — Deadlock — ver. 1.1 — p. 15/26

Indirect: preventing mutual exclusion

f.o This condition depends on the nature of the resource. T

If resource must be locked, then the OS must support
mutual exclusion.
s If concurrent processes share data, there is a
danger of data corruption
s I.e., two or more threads both write to same file at
the same time

o |

0OSS| — Deadlock — ver. 1.1 —p. 16/26

Indirect: prevent hold & wait — 1

- N

#® Process does not proceed until allocated all resources it
will ever need.

® Wasteful, since:

s process may wait much longer for all resources
rather than enough to start with.

s Resources locked while not being used.

o |

0OSS| — Deadlock — ver. 1.1 —=p. 17/26

Indirect: prevent hold & wait — 2
- -

Another way to prevent hold and wait:

#® Process holds only one resource at one time
o Example: modify P as shown

Note no deadlock possible even if do not change Q

o |

0OSS| — Deadlock — ver. 1.1 —p. 18/26

Indirect: prevent hold & wait — 3
- -

Another strategy is for a thread or process to test if
additional resources are available before waiting for

them
If any resource is not available,
s then release all resources,
s Yield the CPU and then try again

s Yyield = give up, i.e, thread voluntarily goes to the

end of the scheduler queue for threads of its own
priority

s means another thread gets the CPU instead

® See backoff.c from Programming with POSIX
Threads, pp. 67-69

o |

0OSS| — Deadlock — ver. 1.1 —p. 19/26

Indirect: prevent hold & wait 3

- N

Process P Process Q
Get A Get B
éeieése A ée£ A
éeé é ﬁeieése B
Release B Release A

o |

0OSS| — Deadlock — ver. 1.1 — p. 20/26

-

o

Release

Release B

Get

Indirect: prevent hold & wait 4

Preogress of

process Q

=

&

N

N
N
\i\\\\\%QE
N
RAR
MARRRRARRR
ARARRRRRRR
ARRRRRRRN
ARARRRRRRN
ARARRRRRRN
ARRRRR RN
ARARRRRARRN
ANNNNS NN N

/

BN

Get A

Release A Get B

e

require A

require B

6

require o

A

require

B

—» Progress
Release Bof

process P

some paths result in
P or Q being
temporarily blocked

but the other process
can always complete

no chance of dead-
lock

0OSS| — Deadlock — ver. 1.1 — p. 21/26

-

|

Indirect: allow preemption

- N

OGS or concurrent application could order a hierarchy of
processes

Highest priority could always get resources used by a
ower priority process.

Drawback: must be able to resume the preempted task
at the point where the resource was taken away.

o |

0OSS| — Deadlock — ver. 1.1 — p. 22/26

Direct: prevent circular wait

- N

Define an order in which resources are always
requested

For example, in previous example, if always allocate A
then B, no deadlock can occur.

This method is a part of strategy used in Linux and
Windows operating system design

o |

0OSS| — Deadlock — ver. 1.1 — p. 23/26

Direct: prevent circular wait — 2

- N

Process P Process Q
Get A Get A
Get B Get B
Release A Release A
Release B Release B

o |

0OSS| — Deadlock — ver. 1.1 — p. 24/26

Direct: prevent circular wait — 3

- N

Preogress of _
process Q require B

2las
Release SN NN
1 tiiiiiifi \\\\iﬁii\
NNNNNANNNN N\ NEANNNY
\\\\\\\W %\\\
NNNNNNN A
NANAAANANNAN NN -
DN e ths result |
Release A 7////299(;”;;‘:&&&&: 5 some patns result In
7 AN P or Q being
5252 SSNNNNNNN v blocked
)g;f)&\\\\\\\\ 4 temporar/y OCKe
5 NN
ANNNNNNNNY
Get 55055 NANNANAN = ® but the other process

require can always complete
A

again, no possibility

y / of deadlock

6
—— P ProgreSS

Get A GetB Release A Releas&B
_/Y\J Process P

require A

%\\ N
e

0OSS| — Deadlock — ver. 1.1 — p. 25/26

o o

o o

Conclusion

Deadlock is very undesirable
Occurs within a set of processes or threads

The processes “lock up”, each process waiting for the
other.

4 conditions all required for deadlock
deadlock avoidance detects and avoids unsafe states

Prevention involves removing/preventing one or more of
these conditions

0OSS| — Deadlock — ver. 1.1 — p. 26/26

-

|

	Deadlock
	What is deadlock?
	Concurrent Systems
	Starvation
	Gridlock on physical road
	Gridlock --- 2
	Requirements for Deadlock
	Deadlock Avoidance
	Two processes that can deadlock
	Deadlock Example --- 2
	Deadlock Example --- 3
	Deadlock Example --- 4
	Deadlock Example --- 5
	How to prevent deadlock?
	Indirect: preventing mutual exclusion
	Indirect: prevent hold & wait --- 1
	Indirect: prevent hold & wait --- 2
	Indirect: prevent hold & wait --- 3
	Indirect: prevent hold & wait 3
	Indirect: prevent hold & wait 4
	Indirect: allow preemption
	Direct: prevent circular wait
	Direct: prevent circular wait --- 2
	Direct: prevent circular wait --- 3
	Conclusion

