
Contents

Introduction

What is a process?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 2

What is a process? — 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 3

What is a thread? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 4

Program counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 5

Environment of a process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 6

Permissions of a Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 7

Multitasking

Multitasking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 8

Multitasking — 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 9

Multitasking — 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 10

Start of Process

Birth of a Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 11

Process tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 12

Scheduler

Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 13

When to Switch Processes? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 14

Scheduling statistics: vmstat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 15

Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 16

Process States

Process States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 17

What is Most Common State? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 18

Most Processes are Blocked . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 19

Linux Process States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 20

Linux Process States — 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 21

Linux Process States — 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 22

Process States: vmstat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 23

Tools for monitoring processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 24

Monitoring processes in Win 2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 25

top

Process Monitoring — top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 27

load average. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 28

top: process states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 29

top and memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 30

Virtual Memory: suspended processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 31

Suspended Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 32

Process Control Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 33

OS Process Control Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 34

What is in a PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 35

Context Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 36

Execution Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 37

Program Counter in PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 38

PCB Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 39

PCB Example Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 40

PCB Example — Continued. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 41

Address of I/O instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 42

System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 43

System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 44

0-1

IPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 45

Problem with Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 46

Interprocess Communication (IPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 47

IPC — Shared Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 48

IPC — Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 49

Signals and the Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 50

Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 51

Threads and Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 52

Threads have own. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 53

Threads share a lot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 54

Problem with threads: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 55

Race Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 56

Race Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 57

Critical Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 58

Race Condition — one possibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 59

Example — another possibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 60

Solution: Synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 61

File Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 62

Summary and References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 63

Summary — Process States, Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 64

Summary — Processes and Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 65

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slide 66

0-2

O
S

S
I
—

ve
r.

1
.5

P
ro

c
e
s
s
e
s

-
p
.
1
/6

6

P
ro

ce
ss

es
a

n
d

T
h

re
a

d
s

W
h

a
t

a
re

p
ro

ce
ss

es
?

H
o
w

d
o

es
th

e
o

p
er

a
ti

n
g

sy
st

em
m

a
n

a
g

e
th

em
?

N
ic

k
U

rb
a
n
ik

n
ic

k
u

@
n

ic
k
u

.o
rg

A
c
o

m
p

u
ti
n

g
d

e
p

a
rt

m
e

n
t

C
o
p
y
ri

g
h
t
C

o
n
d
it
io

n
s
:

O
p
e
n

P
u
b
lic

a
ti
o
n

L
ic

e
n
s
e

(s
e
e
h
t
t
p
:
/
/
w
w
w
.
o
p
e
n
c
o
n
t
e
n
t
.
o
r
g
/
o
p
e
n
p
u
b
/

)

O
S

S
I
—

ve
r.

1
.5

P
ro

c
e
s
s
e
s

-
p
.
2
/6

6

W
h

a
t

is
a

p
ro

ce
ss

?

A
p
ro

c
e
s
s

is
a

p
ro

g
ra

m
in

e
xe

c
u
ti
o
n

E
a
c
h

p
ro

c
e
s
s

h
a
s

a
p
ro

c
e
s
s

ID

In
L
in

u
x
,

$
p
s

a
x

p
ri

n
ts

o
n
e

lin
e

fo
r

e
a
c
h

p
ro

c
e
s
s
.

A
p
ro

g
ra

m
c
a
n

b
e

e
xe

c
u
te

d
a

n
u
m

b
e
r

o
f
ti
m

e
s

s
im

u
lt
a
n
e
o
u
s
ly

.
E

a
c
h

is
a

s
e
p
a
ra

te
p
ro

c
e
s
s
.

O
S

S
I
—

ve
r.

1
.5

P
ro

c
e
s
s
e
s

-
p
.
3
/6

6

W
h

a
t

is
a

p
ro

ce
ss

?
—

2

A
p
ro

c
e
s
s

in
c
lu

d
e
s

c
u
rr

e
n
t

va
lu

e
s

o
f:

P
ro

g
ra

m
c
o
u
n
te

r
R

e
g
is

te
rs

V
a
ri

a
b
le

s

A
p
ro

c
e
s
s

a
ls

o
h
a
s
:

T
h
e

p
ro

g
ra

m
c
o
d

e
It
’s

o
w

n
a
d
d
re

s
s

s
p
a
c
e
,

in
d
e
p
e
n
d
e
n
t
o
f
o
th

e
r

p
ro

c
e
s
s
e
s

A
u
s
e
r

th
a
t

o
w

n
s

it
A

g
ro

u
p

o
w

n
e
r

A
n

e
n
v
ir
o
n
m

e
n
t
a
n
d

a
c
o
m

m
a
n
d

lin
e

T
h
is

in
fo

rm
a
ti
o
n

is
s
to

re
d

in
a

p
ro

c
e
s
s

c
o
n
tr

o
l
b
lo

c
k
,

o
r

ta
s
k

d
e
s
c
ri

p
to

r
o
r

p
ro

c
e
s
s

d
e
s
c
ri

p
to

r
a

d
a
ta

s
tr

u
c
tu

re
in

th
e

O
S

,
in

th
e

p
ro

c
e
s
s

ta
b
le

S
e
e

s
lid

e
s

s
ta

rt
in

g
a
t

§
3
4
.

O
S

S
I
—

ve
r.

1
.5

P
ro

c
e
s
s
e
s

-
p
.
4
/6

6

W
h

a
t

is
a

th
re

a
d

?

A
th

re
a
d

is
a

lig
h
tw

e
ig

h
t
p
ro

c
e
s
s

T
a
k
e
s

le
s
s

C
P

U
p
o
w

e
r

to
s
ta

rt
,

s
to

p

P
a
rt

o
f
a

s
in

g
le

p
ro

c
e
s
s

S
h
a
re

s
a
d
d
re

s
s

s
p
a
c
e

w
it
h

o
th

e
r

th
re

a
d
s

in
th

e
s
a
m

e
p
ro

c
e
s
s

T
h
re

a
d
s

c
a
n

s
h
a
re

d
a
ta

m
o
re

e
a
s
ily

th
a
n

p
ro

c
e
s
s
e
s

S
h
a
ri

n
g

d
a
ta

re
q
u
ir
e
s

s
y
n
c
h
ro

n
is

a
ti
o
n

,
i.
e
.,

lo
c
k
in

g
—

s
e
e

s
lid

e
6
1
.

T
h
is

s
h
a
re

d
m

e
m

o
ry

s
p
a
c
e

c
a
n

le
a
d

to
c
o
m

p
lic

a
ti
o
n
s

in
p
ro

g
ra

m
m

in
g
:

“T
h

re
a

d
s

o
ft
e

n
p

re
ve

n
t
a

b
s
tr

a
c
ti
o

n
.

In
o

rd
e

r
to

p
re

ve
n

t
d

e
a

d
lo

c
k
.

y
o

u

o
ft
e

n
n

e
e

d
to

k
n

o
w

h
o
w

a
n

d
if

th
e

lib
ra

ry
y
o

u
a

re
u

s
in

g
u

s
e

s
th

re
a

d
s

in

o
rd

e
r

to
a
vo

id
d

e
a

d
lo

c
k

p
ro

b
le

m
s
.

S
im

ila
rl

y,
th

e
u

s
e

o
f

th
re

a
d

s
in

a

lib
ra

ry
c
o

u
ld

b
e

a
ff
e

c
te

d
b
y

th
e

u
s
e

o
f

th
re

a
d

s
a

t
th

e
a

p
p

lic
a

ti
o

n
la

y
e

r.”
–

D
a
v
id

K
o

rn
S

e
e

p
a
g
e

1
8
0
,

E
S

R
in

re
fe

re
n
c
e
s
,

§
6
6

.

O
S

S
I
—

ve
r.

1
.5

P
ro

c
e
s
s
e
s

-
p
.
5
/6

6

P
ro

g
ra

m
co

u
n

te
r

T
h
e

c
o
d
e

o
f
a

p
ro

c
e
s
s

o
c
c
u
p
ie

s
m

e
m

o
ry

T
h
e

P
ro

g
ra

m
c
o
u
n

te
r

(P
C

)
is

a
C

P
U

re
g
is

te
r

P
C

h
o
ld

s
a

m
e
m

o
ry

a
d
d
re

s
s
..

.

..
.o

f
th

e
n
e
x
t
in

s
tr

u
c
ti
o
n

to
b
e

fe
tc

h
e
d

a
n
d

e
xe

c
u
te

d

http://www.opencontent.org/openpub/


OSSI — ver. 1.5 Processes - p. 6/66

Environment of a process

The environment is a set of names and values

Examples:
PATH=/usr/bin:/bin:/usr/X11R6/bin

HOME=/home/nicku

SHELL=/bin/bash

In Linux shell, can see environment by typing:
$ set

OSSI — ver. 1.5 Processes - p. 7/66

Permissions of a Process

A process executes with the permissions of its owner
The owner is the user that starts the process

A Linux process can execute with permissions of another
user or group

If it executes as the owner of the program instead of the
owner of the process, it is called set user ID

Similarly for set group ID programs

OSSI — ver. 1.5 Processes - p. 8/66

Multitasking

Our lab PCs have one main CPU

But multiprocessor machines are becoming
increasingly common
Linux 2.6.x kernel scales to 16 CPUs

How execute many processes “at the same time”?

OSSI — ver. 1.5 Processes - p. 9/66

Multitasking — 2

CPU rapidly switches between processes that are “ready
to run”

Really: only one process runs at a time

Change of process called a context switch
See slide §36

With Linux: see how many context switches/second
using vmstat under “system” in column “cs”

OSSI — ver. 1.5 Processes - p. 10/66

Multitasking — 3

This diagram shows how the scheduler gives a “turn” on
the CPU to each of four processes that are ready to run

time

A

D

B

C

process

context switches

CPU executes process

OSSI — ver. 1.5 Processes - p. 11/66

Birth of a Process

In Linux, a process is born from a fork() system call
A system call is a function call to an operating system
service provided by the kernel

Each process has a parent

The parent process calls fork()

The child inherits (but cannot change) the parent
environment, open files

Child is identical to parent, except for return value of
fork().

Parent gets child’s process ID (PID)
Child gets 0

OSSI — ver. 1.5 Processes - p. 12/66

Process tree

Processes may have parents and children

Gives a family tree

In Linux, see this with commands:
$ pstree

or
$ ps axf

OSSI — ver. 1.5 Processes - p. 13/66

Scheduler

OS decides when to run each process that is ready to
run (“runable”)

The part of OS that decides this is the scheduler

Scheduler aims to:
Maximise CPU usage
Maximise process completion
Minimise process execution time
Minimise waiting time for ready processes
Minimise response time



OSSI — ver. 1.5 Processes - p. 14/66

When to Switch Processes?

The scheduler may change a process between executing
(or running) and ready to run when any of these events
happen:

clock interrupt
I/O interrupt
Memory fault
trap caused by error or exception
system call

See slide §17 showing the running and ready to run
process states.

OSSI — ver. 1.5 Processes - p. 15/66

Scheduling statistics: vmstat

The “system” columns give statistics about scheduling:
“cs” — number of context switches per second
“in” — number of interrupts per second

See slide §36, man vmstat

OSSI — ver. 1.5 Processes - p. 16/66

Interrupts

Will discuss interrupts in more detail when we cover I/O

An interrupt is an event (usually) caused by hardware
that causes:

Saving some CPU registers
Execution of interrupt handler
Restoration of CPU registers

An opportunity for scheduling

OSSI — ver. 1.5 Processes - p. 17/66

Process States

Blocked

Running

Ready

input available

scheduler
chooses another

processscheduler
chooses
this process

waiting
for input

OSSI — ver. 1.5 Processes - p. 18/66

What is Most Common State?

Now, my computer has 160 processes.

How many are running, how many are ready to run, how
many are blocked?

What do you expect is most common state?

OSSI — ver. 1.5 Processes - p. 19/66

Most Processes are Blocked

9:41am up 44 days, 20:12, 1 user, load average: 2.02, 2.06, 2.13

160 processes: 145 sleeping, 2 running, 13 zombie, 0 stopped

Here you see that most are sleeping, waiting for input!

Most processes are “I/O bound”; they spend most time
waiting for input or waiting for output to complete

With one CPU, only one process can actually be running
at one time

However, surprisingly few processes are ready to run

The load average is the average number of processes
that are in the ready to run state.

In output from the top program above, see over last 60
seconds, there are 2.02 processes on average in RTR

state

OSSI — ver. 1.5 Processes - p. 20/66

Linux Process States

running state

scheduling

uninterruptible

stopped

zombie
creation

signal
or

event

event

executingready to run

wait
for event

OSSI — ver. 1.5 Processes - p. 21/66

Linux Process States — 2

Running — actually contains two states:
executing, or
ready to execute

Interruptable — a blocked state
waiting for event, such as:

end of an I/O operation,
availability of a resource, or
a signal from another process

Uninterruptable — another blocked state
waiting directly on hardware conditions
will not accept any signals (even SIGKILL)



OSSI — ver. 1.5 Processes - p. 22/66

Linux Process States — 3

Stopped — process is halted
can be restarted by another process
e.g., a debugger can put a process into stopped state

Zombie — a process has terminated
but parent did not wait() for it

OSSI — ver. 1.5 Processes - p. 23/66

Process States: vmstat

The “procs” columns give info about process states:

“r” — number of processes that are in the ready to run
state

“b” — number of processes that are in the
uninterruptable blocked state

OSSI — ver. 1.5 Processes - p. 24/66

Tools for monitoring processes

Linux provides:

vmstat

Good to monitor over time:
$ vmstat 5

procinfo

Easier to understand than vmstat

Monitor over time with
$ procinfo -f

View processes with top — see slides 27 to §30

The system monitor sar shows data collected over time:
See man sar; investigate sar -c and sar -q

See the utilities in the procps software package. You
can list them with
$ rpm -ql procps

ps pkill slabtop top w
OSSI — ver. 1.5 Processes - p. 25/66

Monitoring processes in Win 2000

Windows 2000 provides a tool:

Start → Administrative Tools → Performance.

Can use this to monitor various statistics

OSSI — ver. 1.5 Processes - p. 26/66

Process Monitoring with top

OSSI — ver. 1.5 Processes - p. 27/66

Process Monitoring — top

08:12:13 up 1 day, 13:34, 8 users, load average: 0.16, 0.24, 0.49

111 processes: 109 sleeping, 1 running, 1 zombie, 0 stopped

CPU states: cpu user nice system irq softirq iowait idle

total 0.0% 0.0% 3.8% 0.0% 0.0% 0.0% 96.1%

Mem: 255608k av, 245064k used, 10544k free, 0k shrd, 17044k buff

152460k active, 63236k inactive

Swap: 1024120k av, 144800k used, 879320k free 122560k cached

PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND

1253 root 15 0 73996 13M 11108 S 2.9 5.5 19:09 0 X

1769 nicku 16 0 2352 1588 1488 S 1.9 0.6 2:10 0 magicdev

23548 nicku 16 0 1256 1256 916 R 1.9 0.4 0:00 0 top

1 root 16 0 496 468 440 S 0.0 0.1 0:05 0 init

2 root 15 0 0 0 0 SW 0.0 0.0 0:00 0 keventd

3 root 15 0 0 0 0 SW 0.0 0.0 0:00 0 kapmd

4 root 34 19 0 0 0 SWN 0.0 0.0 0:00 0 ksoftirqd/0

6 root 15 0 0 0 0 SW 0.0 0.0 0:00 0 bdflush

5 root 15 0 0 0 0 SW 0.0 0.0 0:11 0 kswapd

OSSI — ver. 1.5 Processes - p. 28/66

top: load average

08:12:13 up 1 day, 13:34, 8 users, load average: 0.16, 0.24, 0.49

load average is measured over the last minute, five
minutes, fifteen minutes

Over that time is the average number of processes that
are ready to run, but which are not executing

A measure of how “busy” a computer is.

OSSI — ver. 1.5 Processes - p. 29/66

top: process states

111 processes: 109 sleeping, 1 running, 1 zombie, 0 stopped

sleeping Most processes (109/111) are sleeping, waiting for
I/O

running This is the number of processes that are both ready
to run and are executing

zombie There is one process here that has terminated, but
its parent did not wait() for it.

The wait() system calls are made by a parent
process, to get the exit() status of its child(ren).

This call removes the process control block from the
process table, and the child process does not exist
any more. (§34)

stopped When you press
☛

✡

✟

✠Control-z in a shell, you will
increase this number by 1



OSSI — ver. 1.5 Processes - p. 30/66

top: Processes and Memory

PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND

1253 root 15 0 73996 13M 11108 S 2.9 5.5 19:09 0 X

SIZE This column is the total size of the process, including
the part which is swapped (paged out) out to the swap
partition or swap file
Here we see that the process X uses a total of
73,996 Kb, i.e., 73,996× 1024 bytes ≈ 72MB, where here
1MB = 2

20 bytes.

RSS The resident set size is the total amount of RAM that a
process uses, including memory shared with other
processes. Here X uses a total of 13MB RAM, including
RAM shared with other processes.

SHARE The amount of shared memory is the amount of
RAM that this process shares with other processes. Here
X shares 11,108 KB with other processes.

We can see that the total amount of RAM used exclusively

OSSI — ver. 1.5 Processes - p. 31/66

Virtual Memory: suspended processes

With memory fully occupied by processes, could have all
in blocked state!

CPU could be completely idle, but other processes
waiting for RAM

Solution: virtual memory
will discuss details of VM in memory management
lecture

Part or all of process may be saved to swap partition or
swap file

OSSI — ver. 1.5 Processes - p. 32/66

Suspended Processes

Could add more states to process state table:
ready and suspended
blocked and suspended

OSSI — ver. 1.5 Processes - p. 33/66

Process Control Blocks

The Process Table

Data structure in OS to hold
information about a process

OSSI — ver. 1.5 Processes - p. 34/66

OS Process Control Structures

Every OS provides process tables to manage processes

In this table, the entries are called process control blocks
(PCBs), process descriptors or task descriptors. We will
use the abbreviation PCB.

There is one PCB for each process

in Linux, PCB is called task_struct, defined in
include/linux/sched.h

In a Fedora Core or Red Hat system, you will find it in
the file
/usr/src/linux-2.*/include/linux/sched.h

if you have installed the kernel-source software
package

OSSI — ver. 1.5 Processes - p. 35/66

What is in a PCB

In slide §3, we saw that a PCB contains:
a process ID (PID)
process state (i.e., executing, ready to run, sleeping
waiting for input, stopped, zombie)
program counter, the CPU register that holds the
address of the next instruction to be fetched and
executed
The value of other CPU registers the last time the
program was switched out of executing by a context
switch — see slide §36
scheduling priority
the user that owns the process
the group that owns the process
pointers to the parent process, and child processes
Location of process’s data and program code in
memory
List of allocated resources (including open files)

OSSI — ver. 1.5 Processes - p. 36/66

Context Switch

OS does a context switch when:
stop current process from executing, and
start the next ready to run process executing on CPU

OS saves the execution context (see §37) to its PCB

OS loads the ready process’s execution context from its
PCB

When does a context switch occur?
When a process blocks, i.e., goes to sleep, waiting for
input or output (I/O), or
When the scheduler decides the process has had its
turn of the CPU, and it’s time to schedule another
ready-to-run process

A context switch must be as fast as possible, or
multitasking will be too slow

Very fast in Linux OS
OSSI — ver. 1.5 Processes - p. 37/66

Execution Context

Also called state of the process (but since this term has
two meanings, we avoid that term here), process context
or just context

The execution context is all the data that the OS must
save to stop one process from executing on a CPU, and
load to start the next process running on a CPU

This includes the content of all the CPU registers, the
location of the code, . . .

Includes most of the contents of the process’s PCB.



OSSI — ver. 1.5 Processes - p. 38/66

Program Counter in PCB

What value is in the program counter in the PCB?

If it is not executing on the CPU,
The address of the next CPU instruction that will be
fetched and executed the next time the program starts
executing

If it is executing on the CPU,
The address of the first CPU instruction that was
fetched and executed when the process began
executing at the last context switch (§36)

OSSI — ver. 1.5 Processes - p. 39/66

Process Control Blocks—Example

The diagram in slide §40 shows three processes and
their process control blocks.

There are seven snapshots t0, t1, t2, t3, t4, t5 and t6 at
which the scheduler has changed process (there has
been a context switch—§36)

On this particular example CPU, all I/O instructions are
2 bytes long

The diagram also shows the queue of processes in the:
Ready queue (processes that are ready to run, but do
not have a CPU to execute on yet)
Blocked, or Wait queue, where the processes have
been blocked because they are waiting for I/O to finish.

OSSI — ver. 1.5 Processes - p. 40/66

PCB Example: Diagram

P3 P2 P3

P1

PCB
for P1

PCB

PCB

for P2

for P3

Ready Queue:

Blocked Queue: P2

Running

Running

Running

Running

Running

Running

Ready

Ready

Blocked

Blocked

BlockedReady

Ready

P1 P2

Ready

Process 1 has terminated;
It’s PCB has been freed

Process 2 has terminated
PCB is freed

P3 has

PCB freed
exited;

Ready

P3

P3

0xCAFE

0xFACE 0xFACE 0xFEED 0xFEED 0xFEED

0xC0DE 0xC0DE 0xC0DE

0xDEAF 0xDEAF 0xDEAF 0xD1CE 0xD1CE 0xD1CE

time

CPU idle

t0 t1 t2 t3 t4 t5 t6

OSSI — ver. 1.5 Processes - p. 41/66

PCB Example — Continued

In slide §40,
The times t0, t1, t2, t3, t4, t5 and t6 are when the
scheduler has selected another process to run.
Note that these time intervals are not equal, they are
just the points at which a scheduling change has
occurred.

Each process has stopped at one stage to perform I/O

That is why each one is put on the wait queue once
during its execution.

Each process has performed I/O once

OSSI — ver. 1.5 Processes - p. 42/66

What is the address of I/O instructions?

We are given that all I/O instructions in this particular
example are two bytes long (slide §39)

We can see that when the process is sleeping (i.e.,
blocked), then the program counter points to the
instruction after the I/O instruction
So for process P1, which blocks with program counter
PC = C0DE16, the I/O instruction is at address
C0DE16 − 2 = C0DC16

for process P2, which blocks with program counter
PC = FEED16, the I/O instruction is at address
FEED16 − 2 = FEEB16

for process P3, which blocks with program counter
PC = D1CE16, the I/O instruction is at address
D1CE16 − 2 = D1CC16

OSSI — ver. 1.5 Processes - p. 43/66

Process System Calls

How the OS controls processes

How you use the OS to control
processe

OSSI — ver. 1.5 Processes - p. 44/66

Major process Control System Calls

fork() — start a new process

execve() — replace calling process with machine code
from another program file

wait(), waitpid() — parent process gets status of
its’ child after the child has terminated, and cleans up the
process table entry for the child (stops it being a zombie)

exit() — terminate the current process

OSSI — ver. 1.5 Processes - p. 45/66

IPC

Inter Process Communication

How Processes can Talk to Each
Other



OSSI — ver. 1.5 Processes - p. 46/66

Problem with Processes

Communication!

Processes cannot see the same variables

Must use Inter Process Communication (IPC)

IPC Techniques include:
pipes, and named pipes (FIFOs)
sockets
messages and message queues
shared memory regions

All have some overhead

OSSI — ver. 1.5 Processes - p. 47/66

Interprocess Communication (IPC)

Pipe — circular buffer, can be written by one process,
read by another

related processes can use unnamed pipes
used in shell programming, e.g., the vertical bar ‘|’ in
$ find /etc | xargs file

unrelated processes can use named pipes —
sometimes called FIFOs

Messages — POSIX provides system calls msgsnd()
and msgrcv()

message is block of text with a type
each process has a message queue, like a mailbox
processes are suspended when attempt to read from
empty queue, or write to full queue.

OSSI — ver. 1.5 Processes - p. 48/66

IPC — Shared Memory

Shared Memory — a Common block of memory shared
by many processes

Fastest way of communicating

Requires synchronisation (See slide 61)

OSSI — ver. 1.5 Processes - p. 49/66

IPC — Signals

Some signals can be generated from the keyboard, i.e.,☛

✡

✟

✠Control-C — interrupt (SIGINT);
☛

✡

✟

✠Control-\ — quit

(SIGQUIT),
☛

✡

✟

✠Control-Z — stop (SIGSTOP)

A process sends a signal to another process using the
kill() system call

signals are implemented as single bits in a field in the
PCB, so cannot be queued

A process may respond to a signal with:
a default action (usually process terminates)
a signal handler function (see trap in shell
programming notes), or
ignore the signal (unless it is SIGKILL or SIGSTOP)

A process cannot ignore, or handle a SIGSTOP or a
SIGKILL signal.

A KILL signal will always terminate a process (unless
it is in interruptible sleep)

OSSI — ver. 1.5 Processes - p. 50/66

Signals and the Shell

We can use the kill built in command to make the
kill() system call to send a signal

A shell script uses the trap built in command to handle
a signal

Ignoring the signals SIGINT, SIGQUIT and SIGTERM:
trap "" INT QUIT TERM

Handling the same signals by printing a message then
exiting:
trap "echo ’Got a signal; exiting.’;exit 1" INT QUIT TERM

Handling the same signals with a function call:
signal_handler() {

echo "Received a signal; terminating."

rm -f $temp_file

exit 1

}

trap signal_handler INT QUIT TERM OSSI — ver. 1.5 Processes - p. 51/66

Threads

Lightweight processes that can talk
to each other easily

OSSI — ver. 1.5 Processes - p. 52/66

Threads and Processes

Threads in a process
all share the same
address space

Communication
easier

Overhead less

Problems of locking
and deadlock a major
issue

Processes have separate
address spaces

Communication more
indirect: IPC (Inter Process
Communication)

Overhead higher

Less problem with shared
resources (since fewer
resources to share!)

OSSI — ver. 1.5 Processes - p. 53/66

Threads have own. . .

stack pointer

register values

scheduling properties, such as policy or priority

set of signals they can each block or receive

own stack data (local variables are local to thread)



OSSI — ver. 1.5 Processes - p. 54/66

Threads share a lot

Changes made by one thread to shared system
resources (such as closing a file) will be seen by all other
threads.

Two pointers having the same value point to the same
data.

A number of threads can read and write to the same
memory locations, and so you need to explicitly
synchronise access

OSSI — ver. 1.5 Processes - p. 55/66

Problem with threads:

Avoid 2 or more threads writing or reading and writing
same data at the same time

Avoid data corruption

Need to control access to data, devices, files

Need locking

Provide three methods of locking:
mutex (mutual exclusion)
semaphores
condition variables

OSSI — ver. 1.5 Processes - p. 56/66

Race Condition

OSSI — ver. 1.5 Processes - p. 57/66

Race Conditions

race condition — where outcome of computation
depends on sheduling

an error in coding

Example: two threads both access same list with code
like this:

if ( list.numitems > 0 ) {

// Oh, dear, better not change to

// other thread here!

remove_item( list ); // not here!

// ...and not here either:

--list.numitems;

}

OSSI — ver. 1.5 Processes - p. 58/66

Critical Sections

critical resource — a device, file or piece of data that
cannot be shared

critical section — part of program only one thread or
process should access contains a critical resource

i.e., you lock data, not code

All the code in the previous slide is a critical section

Consider the code:
very_important_count++;

executed by two threads on a multiprocessor machine
(SMP = symmetric multiprocessor)

OSSI — ver. 1.5 Processes - p. 59/66

Race Condition — one possibility

thread 1 thread 2

read very_important_count (5)

add 1 (6)

write very_important_count (6)

read very_important_count (6)

add 1 (7)

write very_important_count (7)

OSSI — ver. 1.5 Processes - p. 60/66

Example — another possibility

thread 1 thread 2

read very_important_count (5)

read very_important_count (5)

add 1 (6)

add 1 (6)

write very_important_count (6)

write very_important_count (6)

OSSI — ver. 1.5 Processes - p. 61/66

Solution: Synchronisation

Solution is to recognise critical sections

use synchronisation, i.e., locking, to make sure only one
thread or process can enter critical region at one time.

Methods of synchronisation include:
file locking
semaphores
monitors
spinlocks
mutexes



OSSI — ver. 1.5 Processes - p. 62/66

File Locking

For example, an flock() system call can be used to
provide exclusive access to an open file

The call is atomic
It either:

completely succeeds in locking access to the file, or
it fails to lock access to the file, because another
thread or process holds the lock
No “half-locked” state

No race condition

Alternatives can result in race conditions; for example:
thread/process 1 checks lockfile
thread/process 2 checks lockfile a very short time later
both processes think they have exclusive write access
to the file
file is corrupted by two threads/processes writing to it
at the same time OSSI — ver. 1.5 Processes - p. 63/66

Summary and References

OSSI — ver. 1.5 Processes - p. 64/66

Summary — Process States, Scheduling

Scheduler changes processes between ready to run and
running states

context switch: when scheduler changes process or
thread

Most processes are blocked, i.e., sleeping: waiting for I/O

understand the process states
why a process moves from one state to another

Communication between processes is not trivial; IPC

methods include

pipes
messages

shared memory
signals
semaphores

OSSI — ver. 1.5 Processes - p. 65/66

Summary — Processes and Threads

With Linux and Unix, main process system calls are
fork(), exec() and wait()

Threads are lightweight processes
part of one process
share address space
can share data easily
sharing data requires synchronisation, i.e., locking

OSSI — ver. 1.5 Processes - p. 66/66

References

There are many good sources of information in the library and on the Web about

processes and threads. Here are some I recommend:

Operating Systems: A Modern Perspective: Lab Update, 2nd Edition, Gary

Nutt, Addison-Wesley, 2002. A nice text book that emphasises the practical

(like I do!)

William Stallings, Operating Systems, Fourth Edition, Prentice Hall, 2001,

chapters 3, 4 and 5

Deitel, Deitel and Choffnes, Operating Systems, Third Edition, Prentice Hall,

2004, ISBN 0-13-1182827-4, chapters 3, 4 and 5

Paul Rusty Russell, Unreliable Guide To Locking http://kernelnewbies.

org/documents/kdoc/kernel-locking/lklockingguide.html

Eric S. Raymond, The Art of UNIX Programming, Addison-Wesley, 2004, ISBN

0-13-142901-9.

http://kernelnewbies.org/documents/kdoc/kernel-locking/lklockingguide.html

	What is a process?
	What is a process? — 2
	What is a thread?
	Program counter
	Environment of a process
	Permissions of a Process
	Multitasking
	Multitasking — 2
	Multitasking — 3
	Birth of a Process
	Process tree
	Scheduler
	When to Switch Processes?
	Scheduling statistics: vmstat
	Interrupts
	Process States
	What is Most Common State?
	Most Processes are Blocked
	Linux Process States
	Linux Process States — 2
	Linux Process States — 3
	Process States: vmstat
	Tools for monitoring processes
	Monitoring processes in Win 2000
	top
	Process Monitoring — top
	load average
	top: process states
	top and memory
	Virtual Memory: suspended processes
	Suspended Processes

	Process Control Blocks
	OS Process Control Structures
	What is in a PCB
	Context Switch
	Execution Context
	Program Counter in PCB
	PCB Example
	PCB Example Diagram
	PCB Example — Continued
	Address of I/O instructions

	System Calls
	System Calls

	IPC
	Problem with Processes
	Interprocess Communication (IPC)
	IPC — Shared Memory
	IPC — Signals
	Signals and the Shell

	threads
	Threads and Processes
	Threads have own…
	Threads share a lot
	Problem with threads:

	Race Condition
	Race Conditions
	Critical Sections
	Race Condition — one possibility
	Example — another possibility
	Solution: Synchronisation
	File Locking

	Summary and References
	Summary — Process States, Scheduling
	Summary — Processes and Threads
	References


