Job Control	Job Control	Signals and IPC	Signals and IPC	Processes and Threads	Processes	File Permissions and Symbolic Links	Files and File Permissions	find, xargs	diff.	POSIX	POSIX Commands	Shell Programming.	Shell Programming	Why mainframe better than servers?	Virtual Machine	Four Structures	Operating System Types	Open Standards do not limit access	Open Protocols and Open Standards	
. Slid	Slid	. Slide	. Slid	. Slide	. Slide	: Slid	. Slide	. Slid	. Slide	: Slid	. Slid	: SII	: SII	: SII	: SI	: SI	: SI	Slide		
Slide 21	Slide 20	le 19	Slide 18	le 17	le 16	Slide 15	e 14	Slide 13	e 12	Slide 11	Slide 10	Slide 9	Slide 8	Slide 7	Slide 6	Slide 5	Slide 4	de 3		

Summary of the Subject

Nick Urbanik

nicku@nicku.org

A computing department

Copyright Conditions: Open Publication License

(see http://www.opencontent.org/openpub/)

OSSI — ver. 1.1

Summary of the Subject - p. 1/21

Open Standards do not limit access

- Data encoded in a proprietary format may be expensive to recover far into the future
- Legal restrictions imposed by patents may require additional royalties to be paid in addition to the costs of reverse-engineering.
- See the updated notes on Free Software and Open Standards.

Open Protocols and Open Standards

il — ver. 1.1

c

Summary of the Subject - p. 3/21

Operating System Types

OSSI — ver. 1.

Summary of the Subject - p. 4/2

Virtual Machine

- IBM sell many mainframes
 - very large, reliable, expensive computers with high input, output capability
 - Run many virtual machines on the one physical machine
 - Each virtual machine is isolated from the others, so virtual machines can be set up on the one mainframe for two companies that are competitors
 - No company can directly find out what is on the other virtual machines
 - One mainframe can replace many smaller servers in a data centre.

Four Structures

- We covered four os structures:
 - Monolithic
 - Layered
 - Microkernel
 - Virtual Machine
 - Monolithic OS: examples: Linux, some Unix systems. All kernel code executes in the same address space—low communication overhead
 - Layered Attempts to isolate parts of OS from each other to make the system more modular; has increased overhead of communication between the layers
 - Microkernel tries to make the OS kernel as small as possible. Overhead of communication between the many simple components makes it hard for anyone to understand the system.
- Make sure you know what a system call and a Trap are: p. 5/21

Why mainframe better than servers?

- A company can choose whether to pay for a single mainframe or a number of separate server machines to provide their network services
- The mainframe may cost less than an equivalent number of individual servers because:
 - The load can be shared among all the virtual machines, and the mainframe CPU can be used effectively
 - Individual servers need to have enough CPU processing power to meet peak demand, but normal traffic will be much less than the peak.
 - Because of this, the individual servers will have a lot of unused processing power.
 - The mainframe will use much less floor space, and so save money
 - Thesmainframe will use much less electricity shan the color p. 7/21

1 Summary of the Subject

Shell Programming

Shell Programming

- Make sure you understand what you are doing in the shell assignment.
- Understand how to use the keychain program with your assignment.
- Note: I have updated the pages about keychain in the notes in Module 13.

Summary of the Subject - p.

OSSI — ver. 1.1

mmary of the Subject - p. 9/21

POSIX Commands

POSIX

- POSIX is a standard, which defines a standard set of system calls, a standard set of commands, and a standard shell programming language.
- Linux aims to be compliant with the POSIX standards.
 Many Unix systems are POSIX compliant.

OSSI — ver. 1.1

Summary of the Subject - p. 10/21

OSSI — ver. 1.1

Summary of the Subject - p. 11/21

diff

- Often used like this:
 - \$ diff -u \(\text{orignal file} \) \(\text{new file} \)
- Output of the diff command shows the differences between two sets of files.
- Output is per line:
 - if a line in \(\langle original file \rangle\) is not in \(\langle new file \rangle\), the output will have a '-' at the start of the line.
 - if a line in \(\text{original file} \) is in \(\text{new file} \), but not \(\text{original file} \), the output will have a '+' at the start of the line.
 - if a line has changed, even by one character, the line from \(\langle original file \rangle \) will have a '-' in the output, while the line from \(\langle new file \rangle \) will have a '+'.
 - Two or so lines are shown around the changes, so that it is easy to see where the change is. These *context* lines do not have any a '+' or '-' in front, but a space '—' in stread

find, xargs

- These two tools often are used go together.
- Make sure you understand how xargs works.
 find uses logic expressions to find files that match particular requirements.

grep used to search for strings in *files* ... and also in standard output.

OSSI — ver. 1.

Summary of the Subject - p. 13/21

Files and File Permissions

File Permissions and Symbolic Links

- Make sure that you have worked though and understood all the problems in the Permissions Tutorial http://nicku.org/ossi/lab/permissions/ permissions.pdf
- We have covered permissions in more detail than in previous years, and permissions are a vital topic in managing POSIX systems.
- We also spent some time studying symbolic links
 - Make sure you understand clearly the difference between a relative symbolic link and an absolute symbolic link
 - Make sure you understand how to create them from any directory.
 - Please study the handout about symbolic links
 http://nicku.org/ossi/lab/sym-link/
 symmulpink.pdf

OSSI — ver. 1.1

Summary of the Subject - p. 14/21

Processes

OSSI — ver. 1.

mmary of the Subject - p. 16/21

Signals and IPC

How Processes can Talk to Each Other

OSSI — ver. 1.

Summary of the Subject - p. 18/2

Job Control

Processes and Threads

- Processes have a Process Control Block (PCB)
- A PCB is one entry in the process table
 - In Linux, it is called task_struct. Some people call it a task descriptor
- A PCB holds a lot of information, including:
 - The Process ID, (PID), PID of parent (PPID)
 - various User IDs, (UIDs), group IDs (GIDs)
 - An environment (containing environment variables such as PATH
 - A copy of the CPU registers the last time the process was suspended, including a copy of the program counter.
 - The process state (see the two diagrams of process state)
 - Address mapping details
 - Resources held by the process, such as a listrof files ett-p. 17/21

Signals and IPC

- Processes cannot easily share information
- Need to use Inter Process Communication (IPC) for two processes to share data.
- Examples:
 - Pipes you used in shell programming
 - Sockets over a network (e.g., for the Internet), and through a socket file — the ssh-agent talks to ssh, scp and other SSH clients through a socket
 - Signals See the assignment and the trapall shell script
- Signal is sent by the kill() system call
 - The kill shell command also makes the kill() system call
- A process often terminates when it recieves a signal
- A prosess can trap a signal by executing some Gode Subject p. 19/21

Job Control

- We stop a process with (Control-Z)
- This sends a STOP signal to the process.
- A stopped process is forced to stop executing, but is still using memory and holding resources and file locks, that it was holding when you sent it the STOP signal.
- Understand what fg, bg, jobs do.
- Read about this again in module 2.

SSI — ver. 1.1 Summary of the Subject - p. 20/21 OSSI — ver. 1.1 Summary of the Subject - p. 21/2