
OSSI — ver. 1.1 Summary of the Subject - p. 1/21

Summary of the Subject

Nick Urbanik

nicku@nicku.org

A computing department

Copyright Conditions: Open Publication License

(see http://www.opencontent.org/openpub/)

http://www.opencontent.org/openpub/


Open Protocols and Open

Standards

Open Standards do not limit

access

Operating System Types

Shell Programming

POSIX Commands

Files and File Permissions

Processes

Signals and IPC

Job Control

OSSI — ver. 1.1 Summary of the Subject - p. 2/21

Open Protocols and Open Standards



Open Protocols and Open

Standards

Open Standards do not limit

access

Operating System Types

Shell Programming

POSIX Commands

Files and File Permissions

Processes

Signals and IPC

Job Control

OSSI — ver. 1.1 Summary of the Subject - p. 3/21

Open Standards do not limit access

■ Data encoded in a proprietary format may be expensive to
recover far into the future

■ Legal restrictions imposed by patents may require
additional royalties to be paid in addition to the costs of
reverse-engineering.

■ See the updated notes on Free Software and Open
Standards.



Open Protocols and Open

Standards

Operating System Types

Four Structures

Virtual Machine

Why mainframe better than

servers?

Shell Programming

POSIX Commands

Files and File Permissions

Processes

Signals and IPC

Job Control

OSSI — ver. 1.1 Summary of the Subject - p. 4/21

Operating System Types



Open Protocols and Open

Standards

Operating System Types

Four Structures

Virtual Machine

Why mainframe better than

servers?

Shell Programming

POSIX Commands

Files and File Permissions

Processes

Signals and IPC

Job Control

OSSI — ver. 1.1 Summary of the Subject - p. 5/21

Four Structures

■ We covered four OS structures:
◆ Monolithic
◆ Layered
◆ Microkernel
◆ Virtual Machine
Monolithic OS: examples: Linux, some Unix systems. All

kernel code executes in the same address space—low
communication overhead

Layered Attempts to isolate parts of OS from each other to
make the system more modular; has increased
overhead of communication between the layers

Microkernel tries to make the OS kernel as small as
possible. Overhead of communication between the
many simple components makes it hard for anyone to
understand the system.

■ Make sure you know what a system call and a trap are.



Open Protocols and Open

Standards

Operating System Types

Four Structures

Virtual Machine

Why mainframe better than

servers?

Shell Programming

POSIX Commands

Files and File Permissions

Processes

Signals and IPC

Job Control

OSSI — ver. 1.1 Summary of the Subject - p. 6/21

Virtual Machine

■ IBM sell many mainframes
◆ very large, reliable, expensive computers with high

input, output capability
◆ Run many virtual machines on the one physical machine
◆ Each virtual machine is isolated from the others, so

virtual machines can be set up on the one mainframe for
two companies that are competitors
■ No company can directly find out what is on the other

virtual machines
◆ One mainframe can replace many smaller servers in a

data centre.



Open Protocols and Open

Standards

Operating System Types

Four Structures

Virtual Machine

Why mainframe better than

servers?

Shell Programming

POSIX Commands

Files and File Permissions

Processes

Signals and IPC

Job Control

OSSI — ver. 1.1 Summary of the Subject - p. 7/21

Why mainframe better than servers?

■ A company can choose whether to pay for a single
mainframe or a number of separate server machines to
provide their network services

■ The mainframe may cost less than an equivalent number
of individual servers because:
◆ The load can be shared among all the virtual machines,

and the mainframe CPU can be used effectively
◆ Individual servers need to have enough CPU processing

power to meet peak demand, but normal traffic will be
much less than the peak.

◆ Because of this, the individual servers will have a lot of
unused processing power.

◆ The mainframe will use much less floor space, and so
save money

◆ The mainframe will use much less electricity than the
individual servers

◆ The mainframe will use much less air conditioning
power, and save a lot of electricity.



Open Protocols and Open

Standards

Operating System Types

Shell Programming

Shell Programming

POSIX Commands

Files and File Permissions

Processes

Signals and IPC

Job Control

OSSI — ver. 1.1 Summary of the Subject - p. 8/21

Shell Programming



Open Protocols and Open

Standards

Operating System Types

Shell Programming

Shell Programming

POSIX Commands

Files and File Permissions

Processes

Signals and IPC

Job Control

OSSI — ver. 1.1 Summary of the Subject - p. 9/21

Shell Programming

■ Make sure you understand what you are doing in the shell
assignment.

■ Understand how to use the keychain program with your
assignment.

■ Note: I have updated the pages about keychain in the
notes in Module 13.



Open Protocols and Open

Standards

Operating System Types

Shell Programming

POSIX Commands

POSIX

diff

find, xargs

Files and File Permissions

Processes

Signals and IPC

Job Control

OSSI — ver. 1.1 Summary of the Subject - p. 10/21

POSIX Commands



Open Protocols and Open

Standards

Operating System Types

Shell Programming

POSIX Commands

POSIX

diff

find, xargs

Files and File Permissions

Processes

Signals and IPC

Job Control

OSSI — ver. 1.1 Summary of the Subject - p. 11/21

POSIX

■ POSIX is a standard, which defines a standard set of
system calls, a standard set of commands, and a standard
shell programming language.

■ Linux aims to be compliant with the POSIX standards.
Many Unix systems are POSIX compliant.



Open Protocols and Open

Standards

Operating System Types

Shell Programming

POSIX Commands

POSIX

diff

find, xargs

Files and File Permissions

Processes

Signals and IPC

Job Control

OSSI — ver. 1.1 Summary of the Subject - p. 12/21

diff

■ Often used like this:
$ diff -u 〈orignal file〉 〈new file〉

■ Output of the diff command shows the differences
between two sets of files.

■ Output is per line:
◆ if a line in 〈original file〉 is not in 〈new file〉, the output will

have a ‘-’ at the start of the line.
◆ if a line in 〈original file〉 is in 〈new file〉, but not 〈original file〉,

the output will have a ‘+’ at the start of the line.
◆ if a line has changed, even by one character, the line

from 〈original file〉 will have a ‘-’ in the output, while the
line from 〈new file〉 will have a ‘+’.

◆ Two or so lines are shown around the changes, so that it
is easy to see where the change is. These context lines
do not have any a ‘+’ or ‘-’ in front, but a space ’ ’

instead.



Open Protocols and Open

Standards

Operating System Types

Shell Programming

POSIX Commands

POSIX

diff

find, xargs

Files and File Permissions

Processes

Signals and IPC

Job Control

OSSI — ver. 1.1 Summary of the Subject - p. 13/21

find, xargs

■ These two tools often are used go together.

■ Make sure you understand how xargs works.
find uses logic expressions to find files that match

particular requirements.

grep used to search for strings in files . . .

and also in standard output.



Open Protocols and Open

Standards

Operating System Types

Shell Programming

POSIX Commands

Files and File Permissions

File Permissions and Symbolic

Links

Processes

Signals and IPC

Job Control

OSSI — ver. 1.1 Summary of the Subject - p. 14/21

Files and File Permissions



Open Protocols and Open

Standards

Operating System Types

Shell Programming

POSIX Commands

Files and File Permissions

File Permissions and Symbolic

Links

Processes

Signals and IPC

Job Control

OSSI — ver. 1.1 Summary of the Subject - p. 15/21

File Permissions and Symbolic Links

■ Make sure that you have worked though and understood all
the problems in the Permissions Tutorial http://nicku.
org/ossi/lab/permissions/permissions.pdf

■ We have covered permissions in more detail than in
previous years, and permissions are a vital topic in
managing POSIX systems.

■ We also spent some time studying symbolic links
◆ Make sure you understand clearly the difference

between a relative symbolic link and an absolute
symbolic link

◆ Make sure you understand how to create them from any
directory.

◆ Please study the handout about symbolic links http:
//nicku.org/ossi/lab/sym-link/sym-link.pdf

http://nicku.org/ossi/lab/permissions/permissions.pdf
http://nicku.org/ossi/lab/sym-link/sym-link.pdf


Open Protocols and Open

Standards

Operating System Types

Shell Programming

POSIX Commands

Files and File Permissions

Processes

Processes and Threads

Signals and IPC

Job Control

OSSI — ver. 1.1 Summary of the Subject - p. 16/21

Processes



Open Protocols and Open

Standards

Operating System Types

Shell Programming

POSIX Commands

Files and File Permissions

Processes

Processes and Threads

Signals and IPC

Job Control

OSSI — ver. 1.1 Summary of the Subject - p. 17/21

Processes and Threads

■ Processes have a Process Control Block (PCB)

■ A PCB is one entry in the process table
◆ In Linux, it is called task_struct. Some people call it

a task descriptor

■ A PCB holds a lot of information, including:
◆ The Process ID, (PID), PID of parent (PPID)
◆ various User IDs, (UIDs), group IDs (GIDs)
◆ An environment (containing environment variables such

as PATH
◆ A copy of the CPU registers the last time the process was

suspended, including a copy of the program counter.
◆ The process state (see the two diagrams of process

state)
◆ Address mapping details
◆ Resources held by the process, such as a list of files the

process has open



Open Protocols and Open

Standards

Operating System Types

Shell Programming

POSIX Commands

Files and File Permissions

Processes

Signals and IPC

Signals and IPC

Job Control

OSSI — ver. 1.1 Summary of the Subject - p. 18/21

Signals and IPC

How Processes can Talk to Each Other



Open Protocols and Open

Standards

Operating System Types

Shell Programming

POSIX Commands

Files and File Permissions

Processes

Signals and IPC

Signals and IPC

Job Control

OSSI — ver. 1.1 Summary of the Subject - p. 19/21

Signals and IPC

■ Processes cannot easily share information

■ Need to use Inter Process Communication (IPC) for two
processes to share data.

■ Examples:
◆ Pipes — you used in shell programming
◆ Sockets — over a network (e.g., for the Internet), and

through a socket file — the ssh-agent talks to ssh,
scp and other SSH clients through a socket

◆ Signals — See the assignment and the trapall shell
script

■ Signal is sent by the kill() system call
◆ The kill shell command also makes the kill()

system call

■ A process often terminates when it recieves a signal

■ A process can trap a signal by executing some code when
it recieves the signal

■ No process can ignore or trap the KILL signal or the STOP

signal.

■ Make sure you understand signals.



Open Protocols and Open

Standards

Operating System Types

Shell Programming

POSIX Commands

Files and File Permissions

Processes

Signals and IPC

Job Control

Job Control

OSSI — ver. 1.1 Summary of the Subject - p. 20/21

Job Control



Open Protocols and Open

Standards

Operating System Types

Shell Programming

POSIX Commands

Files and File Permissions

Processes

Signals and IPC

Job Control

Job Control

OSSI — ver. 1.1 Summary of the Subject - p. 21/21

Job Control

■ We stop a process with
☛
✡

✟
✠Control-Z

■ This sends a STOP signal to the process.

■ A stopped process is forced to stop executing, but is still
using memory and holding resources and file locks, that it
was holding when you sent it the STOP signal.

■ Understand what fg, bg, jobs do.

■ Read about this again in module 2.


	Open Protocols and Open Standards
	Open Standards do not limit access

	Operating System Types
	Four Structures
	Virtual Machine
	Why mainframe better than servers?

	Shell Programming
	Shell Programming

	POSIX Commands
	POSIX
	diff
	find, xargs

	Files and File Permissions
	File Permissions and Symbolic Links

	Processes
	Processes and Threads

	Signals and IPC
	Signals and IPC

	Job Control
	Job Control


