Some Supplementary Notes for OSSI 1

1

test: extract from POSIX definition of the test command

NAME

test - evaluate expression

SYNOPSIS

test [expression]

[[expression]]

DESCRIPTION
The test utility shall evaluate the expression and indicate the result of the evaluation by its exit

status. An exit status of zero indicates that the expression evaluated as true and an exit status of 1
indicates that the expression evaluated as false.

In the second form of the utility, which uses “[]1” rather than test, the application shall ensure

that the square brackets are separate arguments.

OPERANDS
The application shall ensure that all operators and elements of primaries are presented as separate

arguments to the test utility.

-X

4

The following primaries can be used to construct expression:

file True if file exists and is a block special file.
file True if file exists and is a character special file.
file True if file exists and is a directory.

file True if file exists.

file True if file exists and is a regular file.

file True if file exists and its set-group-ID flag is set.
file True if file exists and is a symbolic link.

file True if file exists and is a symbolic link.

string True if the length of string is non-zero.

file True if file is a FIFO.

file True if file exists and is readable. True shall indicate that permission to read from file
will be granted, as defined in File Read, Write, and Creation.

file True if file exists and is a socket.
file True if file exists and has a size greater than zero.

file descriptor True if the file whose file descriptor number is file_descriptor is open and is
associated with a terminal.

file True if file exists and its set-user-ID flag is set.

file True if file exists and is writable. True shall indicate that permission to write from file
will be granted, as defined in File Read, Write, and Creation.

file True if file exists and is executable. True shall indicate that permission to execute file
will be granted, as defined in File Read, Write, and Creation. If file is a directory, true shall
indicate that permission to search file will be granted.

string True if the length of string string is zero.

string True if the string string is not the null string.

ver. 1.0

Some Supplementary Notes for OSSI 2

sl = s2 True if the strings s1 and s2 are identical.

sl !'= s2 True if the strings s1 and s2 are not identical.

nl -eq n2 True if the integers n1 and n2 are algebraically equal.

nl -ne n2 True if the integers n1 and n2 are not algebraically equal.

nl -gt n2 True if the integer n1 is algebraically greater than the integer n2.

nl -ge n2 True if the integer n1 is algebraically greater than or equal to the integer n2.
nl -1t n2 True if the integer n1 is algebraically less than the integer n2.

nl -le n2 True if the integer n1 is algebraically less than or equal to the integer n2.

expressionl -a expression2 True if both expressionl and expression2 are true. The -a binary
primary is left associative. It has a higher precedence than -o.

expressionl -o expression2 True if either expressionl or expression2 is true. The -o binary
primary is left associative.

2 Numeric File Permissions: an Excerpt from the GNU Documen-
tation

File permissions are stored internally as 16 bit integers. As an alternative to giving a symbolic mode,
you can give an octal (base 8) number that corresponds to the internal representation of the new
mode. This number is always interpreted in octal; you do not have to add a leading 0, as you do in
C. Mode 0055 is the same as mode 55.

A numeric mode is usually shorter than the corresponding symbolic mode, but it is limited in that
it can not take into account a file’s previous permissions; it can only set them absolutely.

The permissions granted to the user, to other users in the file’s group, and to other users not in the
file’s group are each stored as three bits, which are represented as one octal digit. The three special
permissions are also each stored as one bit, and they are as a group represented as another octal digit.
Here is how the bits are arranged in the 16 bit integer, starting with the lowest valued bit:

Value in Corresponding
Mode Permission

Other users not in the file’s group:
1 Execute

Write
4 Read
Other users in the file’s group:
10 Execute
20 Write
40 Read

The file’s owner:
100 Execute
200 Write
400 Read

Special permissions:
1000 Save text image on swap device
2000 Set group ID on execution
4000 Set user ID on execution

ver. 1.0

Some Supplementary Notes for OSSI 3

For example, numeric mode 4755 corresponds to symbolic mode ‘u=rwxs,go=rx’, and numeric
mode 664 corresponds to symbolic mode ‘ug=rw, o=r’. Numeric mode 0 corresponds to symbolic mode
‘ugo=’.

3 sed: an Excerpt from Lecture Notes

sed—the Stream Editor

sed provides many facilities for editing files

sed reads from standard input and writes to standard output
The substitute command, s///, is the most important

The syntax (using sed as an editor of standard input), is:

$ sed ’s/original/replacement/’

Example: replace the first instance of Windows with Linux on each line of the input:

sed ’s/Windows/Linux/’

Example: replace all instances of Windows with Linux on each line of the input:

sed ’s/Windows/Linux/g’

4 Syntax of Some POSIX Commands

find [{path)...] [{expression)]

find searches the directory tree rooted at each (path) by evaluating (expression) from left to right.
The first argument that begins with =’ *C,)’ *,”, or ‘!’ is taken to be the beginning of the
(expression); any arguments before it are (path)s to search, and any arguments after it are the rest of
the (expression).

Expressions: The expression is made up of options (which affect overall operation rather than the
processing of a specific file, and always return true), tests (which return a true or false value), and
actions (which have side effects and return a true or false value), all separated by operators. -and is
assumed where the operator is omitted. If the expression contains no actions, -print is performed on
all files for which the expression is true.

Tests:

-name (pattern) Base of file name (the path with the leading directories removed) matches shell
pattern (pattern).

Actions:

-exec (command) ;
Execute (command); true if 0 status is returned. All following arguments to find are taken to be
arguments to the command until an argument consisting of *;’ is encountered. The string ‘{}’
is replaced by the current file name being processed. Both of these constructions might need to
be escaped (with a ‘\’) or quoted to protect them from expansion by the shell. The command
is executed in the starting directory.

—-print True; print the full file name on the standard output, followed by a newline.

xargs [(options)] [{(command) [{initial-arguments)]]

xargs reads arguments from the standard input, delimited by blanks (which can be protected with
double or single quotes or a backslash) or newlines, and executes the command (default is /bin/echo)
one or more times with any (initial-arguments) followed by arguments read from standard input.
Blank lines on the standard input are ignored.

ver. 1.0

Some Supplementary Notes for OSSI 4

Options:

--replace, -i Replace occurences of {} in the initial arguments with names read from standard
input. Also, unquoted blanks do not terminate arguments.

egrep [(options)] (pattern) [{file)...]
grep [(options)] (pattern) [(file)...]

grep searches the named input (file)s (or standard input if no files are named, or the file name - is
given) for lines containing a match to the given (pattern). By default, grep prints the matching lines.

Options:

-E, ——extended-regexp Interpret (pattern) as an extended regular expression. egrep is the same as
grep -E.

-c, ——count Suppress normal output; instead print a count of matching lines for each input file. With
the -v, ——invert-match option (see below), count non-matching lines.

-v, ——invert-match Invert the sense of matching, to select non-matching lines.

sort [(option)...] [{file)...]

Write sorted concatenation of all (file)(s) to standard output.

Options:
-b, -—ignore-leading-blanks ignore leading blanks
-f, ——ignore-case fold lower case to upper case characters

-k(pos1) [, (pos2)], ——key=(pos1)[,(pos2)] start a key at (posI), end it at (pos2) (column numbers
start with 1)

-r, —-reverse reverse the result of comparisons
-n, —-numeric-sort compare according to string numerical value

-t (sep), ——field-separator=(sep)

diff [(options)] (from-file) (to-file)
In the simplest case, diff compares the contents of the two files (from-file) and (to-file).

-u Use the unified output format.

cut [(option)...1 [{(file)...]
Print selected parts of lines from each FILE to standard output.

-b, ——bytes=(list) output only these bytes
-c, ——characters=(list) output only these characters

-d (delim), -delimiter=(delim) use (delim) instead of TAB for field delimiter

ver. 1.0

Some Supplementary Notes for OSSI 5

-f (list), -—fields=(list) output only these fields; also print any line that contains no delimiter char-
acter

Use one, and only one of -b, -c or -f. Each (list) is made up of one range, or many ranges
separated by commas. Each range is one of:

N Nth byte, character or field, counted from 1

N- from Nth byte, character or field, to end of line

N-M from Nth to Mth (included) byte, character or field
-M from first to Mth (included) byte, character or field

file [{option)...]1 (file)...

Identify the type of a file by examining the beginning of the file, and comparing with patterns in the
“magic” file /usr/share/file/magic.

Options:

-b Do not prepend filenames to output lines (brief mode).

5 awk: an Excerpt from Lecture notes

Basic awk

e awk is a complete programming language
e Mostly used for one-line solutions to problems of extracting columns of data from text, and
processing it

What Does awk Do?

awk reads file(s) or standard input one line at a time, and

automatically splits the line into fields, and calls them $1, $2,..., $NF

NF is equal to the number of fields the line was split into

$0 contains the whole line

awk has an option -F that allows you to select another pattern as the field separator

o Normally awk splits columns by white space

e To execute code after all lines are processed, create an END block.
awk Examples
e Print the sizes of all files in current directory:
$ 1s -1 | awk ’{print $5}°’
e Add the sizes of all files in current directory and print the size:
$ 1s -1 | awk ’{sum += $5} END{print sum}’
e Print only the permissions, user, group and file names of files in current directory:

$ 1s -1 | awk ’{print $1, $3, $4, $NF}’

ver. 1.0

Some Supplementary Notes for OSSI 6

6 Extract from manual page for crontab file format

A crontab file contains instructions to the cron(8) daemon of the general form: “run this command
at this time on this date”. Each user has their own crontab, and commands in any given crontab will
be executed as the user who owns the crontab.

Blank lines and leading spaces and tabs are ignored. Lines whose first non-space character is a
pound-sign (#) are comments, and are ignored. Note that comments are not allowed on the same line
as cron commands, since they will be taken to be part of the command.

cron(8) examines cron entries once every minute.

The time and date fields are:

field allowed values

minute 0-59

hour 0-23

day of month 1-31

month 1-12 (or names, see below)

day of week 0-7 (0 or 7 is Sun, or use names)

A field may be an asterisk (*), which always stands for “first-last”.

Ranges of numbers are allowed. Ranges are two numbers separated with a hyphen. The specified
range is inclusive. For example, 8-11 for an “hours” entry specifies execution at hours 8, 9, 10 and
11.

Lists are allowed. A list is a set of numbers (or ranges) separated by commas. Examples:
“1,2,5,97, “0-4,8-12".

Step values can be used in conjunction with ranges. Following a range with “/(number)” spec-
ifies skips of the (number)’s value through the range. For example, “0-23/2” can be used in the
hours field to specify command execution every other hour (the alternative in the V7 standard is
“0,2,4,6,8,10,12,14,16,18,20,22”). Steps are also permitted after an asterisk, so if you want to
say “every two hours”, just use “x/2”.

Names can also be used for the “month” and “day of week” fields. Use the first three letters of
the particular day or month (case doesn’t matter). Ranges or lists of names are not allowed.

The “sixth” field (the rest of the line) specifies the command to be run. The entire command
portion of the line, up to a newline or % character, will be executed by /bin/sh or by the shell
specified in the SHELL variable of the cronfile. Percent-signs (%) in the command, unless escaped with
backslash (\), will be changed into newline characters, and all data after the first % will be sent to the
command as standard input.

Note: The day of a command’s execution can be specified by two fields day of month, and day of
week. If both fields are restricted (ie, aren’t *), the command will be run when either field matches
the current time. For example, “30 4 1,15 * 5” would cause a command to be run at 4.30 am on
the 1st and 15th of each month, plus every Friday.

EXAMPLE CRON FILE

run five minutes after midnight, every day

50 x * % $HOME/bin/daily.job >> $HOME/tmp/out 2>&1
run at 2:15pm on the first of every month
15 14 1 * =* $HOME/bin/monthly

ver. 1.0

Some Supplementary Notes for OSSI 7

run at 10 pm on weekdays, annoy Joe

0 22 x * 1-5 mail -s "It’s 10pm" joelJoe,%%Where are your kids?%

23 0-23/2 * * * echo "run 23 minutes after midn, 2am, 4am ..., everyday"
54 % x sun echo "run at 5 after 4 every sunday"

7 Examples of using rsync over SSH

In these examples, the options —avz mean:

-a, ——archive is a simple way of saying you want to copy recursively (i.e., all subdirectories), and
preserve all permissions, ownerships and time stamps.

-v, —-verbose increase the amount of information given; one -v will print the name of each file as it
is transferred, and a brief summary at the end.

-z, ——compress Compress the data sent to the destination.

-e ssh tells rsync to transfer the data over secure shell (SSH).

To transfer content of directory, but not the directory itself, from /usr/src/ on the local machine to
the directory /usr/local/sources on host ictlab

$ rsync -avz -e ssh /usr/src/ ictlab:/usr/local/sources

So for example, a file /usr/src/file.c on the local machine will be transferred to the name /usr/
local/sources/file.c on the host ictlab. Note the trailing slash on the source directory name.

To transfer the directory /usr/src itself, from the local machine to the directory /usr/local/
sources on host ictlab

$ rsync -avz -e ssh /usr/src ictlab:/usr/local/sources

So for example, a file /usr/src/file.c on the local machine will be transferred to the name /usr/
local/src/sources/file.c on the host ictlab. Note there is no trailing slash on the source directory
name.

8 Help Output for some bash Builtin Commands

trap [{arg)] [(signal spec) ...]

The command (arg) is to be read and executed when the shell receives signal(s) (signal spec). If
(arg) is absent all specified signals are reset to their original values. If (arg) is the null string each
(signal spec) is ignored by the shell and by the commands it invokes. If a (signal spec) is EXIT (0)
the command (arg) is executed on exit from the shell. If a (signal spec) is DEBUG, (arg) is executed
after every command. If (arg) is ‘-p’ then the trap commands associated with each (signal spec)
are displayed. If no arguments are supplied or if only ‘-p’ is given, trap prints the list of commands
associated with each signal number. Each (signal spec) is either a signal name in <signal.h> or a
signal number. Note that a signal can be sent to the shell with “kill -signal $$”.

jobs [-lnprs] [(jobspec) ...]

Lists the active jobs. The -1 option lists process IDs in addition to the normal information; the -p
option lists process IDs only. If -n is given, only processes that have changed status since the last
notification are printed. (jobspec) restricts output to that job. The -r and -s options restrict output
to running and stopped jobs only, respectively. Without options, the status of all active jobs is printed.

ver. 1.0

Some Supplementary Notes for OSSI

fg [(jobspec)]

Place (jobspec) in the foreground, and make it the current job. If (jobspec) is not present, the shell’s
notion of the current job is used.

bg [{jobspec)]

Place (jobspec) in the background, as if it had been started with ‘&’. If (jobspec) is not present, the
shell’s notion of the current job is used.

9 Regular Expression Metacharacters

{n,}
{n,m}

Quote the next metacharacter

Match the beginning of the line

Match any character (except newline)

Match the end of the line (or before newline at the end)
Alternation

Grouping, and captures so that it can be used as a backreference
Character class

Negated character class

Match 0 or more times

Match 1 or more times

Match 1 or 0 times

Match exactly n times

Match at least n times

Match at least n but not more than m times

ver. 1.0

