
— LPIC General Linux Part 1 —
(Study Notes) 1 2

geoffrey hector robertson
geoffrey@zip.com.au

June 29, 2005

1Copyright c©2002 Geoffrey Robertson. Permission is granted to make and dis-
tribute verbatim copies or modified versions of this document provided that this copy-
right notice and this permission notice are preserved on all copies under the terms of
the GNU General Public License as published by the Free Software Foundation—either
version 2 of the License or (at your option) any later version.

2RCS Id = Id: lpic.general-linux-1.notes.tex,v 1.2 2002/02/28 23:06:04 geoffrey Exp geoffrey

2

Contents

I Objectives 7
1.103(1.3) GNU & Unix Commands [30] 9

1.103.1 Work on the command line [4] 9
1.103.2 Process text streams using filters [7] 10
1.103.3 Perform basic file management [2] 10
1.103.4 Use streams, pipes, and redirects [3] 10
1.103.5 Create, monitor, and kill processes [7] 11
1.103.6 Modify process execution priorities [2] 11
1.103.7 Search text files using regular expressions [3] 11
1.103.8 Perform basic file editing operations using vi [2] 12

1.104(2.4) Devices, Linux Filesystems, & FHS [21] 12
1.104.1 Create partitions and filesystems [3] 12
1.104.2 Maintain the integrity of filesystems [5] 13
1.104.3 Control mounting and unmounting filesystems [3] . . . 13
1.104.4 Managing disk quota [1] 13
1.104.5 Use file permissions to control access to files [3] 14
1.104.6 Manage file ownership [2] 14
1.104.7 Create and change hard and symbolic links [2] 14
1.104.8 Find system files & place files in the correct location [2] 15

1.106(2.6)Boot, Initialisation, Shutdown and Runlevels [6] 15
1.106.1 (3) Boot the system . 15
1.106.2 Change runlevels and shutdown or reboot system [3] . . 15

1.108(1.8) Documentation [8] . 16
1.108.1 Use and manage local system documentation [5] 16
1.108.2 Find Linux documentation on the Internet [2] 16
1.108.3 Write System Documentation [1] 17

1.111(2.11) Administrative Tasks [24] 17
1.111.1 Manage users and group accounts and related system

files [7] . 17
1.111.2 Tune the user environment and system environment vari-

ables [4] . 17
1.111.3 Configure and use system log files to meet administra-

tive and security needs [3] 18
1.111.4 Automate system administration tasks by scheduling jobs

to run in the future [4] . 18
1.111.5 Maintain an effective data backup strategy [3] 18
1.111.6 Maintain system time [3] 19

3

4 CONTENTS

II Resources 21

103GNU & Unix Commands 23
103.1Work on the command line [4] . 24
103.2Process text streams using filters [7] 25

103.2.1 Text Filter Exercise . 25
103.3Perform basic file management [2] 28
103.4Use streams, pipes, and redirects [3] 29

103.4.1 Create, monitor, and kill processes [7] 30
103.4.2 Modify process execution priorities [2] 31

103.5Search text files using regular expressions [3] 32
103.6Perform basic file editing using vi [2] 33

104Devices, Linux Filesystems & FHS 35
104.1Create partitions and filesystems [3] 36
104.2Maintain the integrity of filesystems [5] 37
104.3Control mounting and unmounting filesystems [3] 38
104.4Managing disk quota [1] . 39
104.5Use file permissions to control access to files [3] 40

104.5.1 Ken Caldwell’s Summary: Use file permissions to control
access to files . 40

104.6Manage file ownership [2] . 42
104.6.1 Ken Caldwell’s Summary: Managing file ownership . . 42

104.7Create and change hard and symbolic links [2] 43
104.8Find system files and place files in the correct location [2] 44

104.8.1 Ken Foskey’s Summary: Using find 44
104.8.2 Andrew Eager’s Summary: Using locate, updatedb

and slocate . 46

111Administrative Tasks 49
111.5Maintain an effective data backup strategy [3] 49

111.5.1 Backup Overview . 49
111.5.2 Backup & Restore methods 50
111.5.3 Software . 52
111.5.4 Rotation & off-site strategies 53

III Practical Exercises 55

103GNU & Unix Commands 57
103.1Work on the command line [4] . 58
103.2Process text streams using filters [7] 59
103.3Perform basic file management [2] 60
103.4Use streams, pipes, and redirects [3] 61
103.5Create, monitor, and kill processes [7] 62
103.6Modify process execution priorities [2] 63
103.7Search text files using regular expressions [3] 65
103.8Perform basic file editing using vi [2] 66

103.8.1 Introduction to vi . 66
103.8.2 Vi tour . 66

CONTENTS 5

104Devices, Linux Filesystems & FHS 71
104.1Create partitions and filesystems [3] 72

104.1.1 Using fdisk . 72
104.2Maintain the integrity of filesystems [5] 74
104.3Control mounting and unmounting filesystems [3] 75
104.4Managing disk quota [1] . 76
104.5Use file permissions to control access to files [3] 77
104.6Manage file ownership [2] . 78
104.7Create and change hard and symbolic links [2] 79
104.8Find system files and place files in the correct location [2] 80

IV Questions 81
104.103(1.3) GNU & Unix Commands [30] 83

104.103.1Work on the command line [4] 83
104.103.2Process text streams using filters [7] 83
104.103.3Perform basic file management [2] 83
104.103.4Use streams, pipes, and redirects [3] 83
104.103.5Create, monitor, and kill processes [7] 83
104.103.6Modify process execution priorities [2] 83
104.103.7Search text files using regular expressions [3] 83
104.103.8Perform basic file editing using vi [2] 84

V Meta 87
105Making Slides Using LATEX 89

105.1Making a . 89

6 CONTENTS

Part I

Objectives

7

General Linux Part 1 [89]

The information in this section is taken from the LPI Project Objective Manage-
ment System and is copyright to the Linux Professional Institute. It should be
noted that the latest version of this information will be found at:
http://www.lpi.org/cgi-bin/poms.py.

A note about the numbering
• The numbers hard on the left margin with one dot, e.g. 1.103, are LPI

Exam Topic numbers.

• The numbers in parentheses next to the LPI Exam Topic numbers are the
old topic numbers and may be used to reference topics in older books
and documentation.

• The numbers hard on the left margin with two dots, e.g. 1.103.1, are LPI
Exam Objectives.

• The numbers in square brackets to the right of Topics and Objectives in-
dicate weightings.

1.103 (1.3) GNU & Unix Commands [30]
1.103.1 Work on the command line [4]
Statement of Objective:

Candidate should be able to Interact with shells and commands using the com-
mand line. This includes typing valid commands and command sequences,
defining, referencing and exporting environment variables, using command
history and editing facilities, invoking commands in the path and outside the
path, using command substitution, applying commands recursively through a
directory tree and using man to find out about commands.

Key files, terms, and utilities include:

bash echo env exec
export man pwd set unset
˜/.bash_history ˜/.profile

9

10

Resources of interest

TBA

1.103.2 Process text streams using filters [7]
Statement of Objective:

Candidate should be able to apply filters to text streams. Tasks include sending
text files and output streams through text utility filters to modify the output,
and using standard UNIX commands found in the GNU textutils package.

Key files, terms, and utilities include:

cat cut expand fmt head
join nl od paste pr
sed sort split tac tail
tr uniq wc unexpand

Resources of interest

TBA

1.103.3 Perform basic file management [2]
Statement of Objective:

Candidate should be able to use the basic UNIX commands to copy, move,
and remove files and directories. Tasks include advanced file management
operations such as copying multiple files recursively, removing directories re-
cursively, and moving files that meet a wildcard pattern. This includes using
simple and advanced wildcard specifications to refer to files, as well as using
find to locate and act on files based on type, size, or time.

Key files, terms, and utilities include:

cp find mkdir mv ls
rm rmdir touch file globbing

Resources of Interest

Manipulating Files: Tutorial from LinuxCommand.org Find Manpage

1.103.4 Use streams, pipes, and redirects [3]
Statement of Objective:

Candidate should be able to redirect streams and connect them in order to effi-
ciently process textual data. Tasks include redirecting standard input, standard
output, and standard error, piping the output of one command to the input of
another command, using the output of one command as arguments to another
command and sending output to both stdout and a file.

1.103. (1.3) GNU & UNIX COMMANDS [30] 11

Key files, terms, and utilities include:

tee xargs < << > >> | ‘ ‘

Resources of Interest

I/O Redirection: Tutorial from LinuxCommand.org
Tee Manpage

1.103.5 Create, monitor, and kill processes [7]
Statement of Objective:

Candidate should be able to manage processes. This includes knowing how to
run jobs in the foreground and background, bring a job from the background
to the foreground and vice versa, start a process that will run without being
connected to a terminal and signal a program to continue running after logout.
Tasks also include monitoring active processes, selecting and sorting processes
for display, sending signals to processes, killing processes and identifying and
killing X applications that did not terminate after the X session closed.

Key files, terms, and utilities include:

& bg fg jobs kill nohup ps top

Resources of Interest

Job Control: Tutorial from LinuxCommand.org ps Manpage kill Manpage

1.103.6 Modify process execution priorities [2]
Statement of Objective:

Candidate should be able to manage process execution priorities. Tasks include
running a program with higher or lower priority, determining the priority of a
process and changing the priority of a running process.

Key files, terms, and utilities include:

nice ps renice top

Resources of Interest

nice Manpage renice Manpage

1.103.7 Search text files using regular expressions [3]
Statement of Objective:

The candidate should be able to manipulate files and text data using regular
expressions. This objective includes creating simple regular expressions con-

12

taining several notational elements. It also includes using regular expression
tools to perform searches through a filesystem or file content.

Key files, terms, and utilities include:

grep regexp sed

Resources of Interest

Regular Expressions for Poets: Courtesy of RobotWisdom.com A Tao of Regu-
lar Expressions: Courtesy of SiteScooper.org Capability Table: Showing a table
of RegExp symbols available for Grep, Egrep, Ed, Vi, Sed, and Nawk.

1.103.8 Perform basic file editing operations using vi [2]
Statement of Objective:

Candidate must be able to edit text files using vi. This objective includes vi
navigation, basic vi nodes, inserting, editing, deleting, copying, and finding
text.

Key files, terms, and utilities include:

vi
/ ?
h j k l
G H L
i c d dd p o a
ZZ :w! :q! :e!
:!

Resources of Interest

VI Lovers Home Page: Resource listing for using the vi text editor

http://www.thomer.com/vi/vi.html

1.104 (2.4) Devices, Linux Filesystems, & FHS [21]
1.104.1 Create partitions and filesystems [3]
Statement of Objective:

Candidates should be able to configure disk partitions and then create filesys-
tems on media such as hard disks. This objective includes using various mkfs
commands to set up partitions to various filesystems, including ext2, ext3, reis-
erfs, vfat, and xfs.

Key files, terms, and utilities include:

fdisk mkfs

1.104. (2.4) DEVICES, LINUX FILESYSTEMS, & FHS [21] 13

Resources of Interest:

TBA

1.104.2 Maintain the integrity of filesystems [5]
Statement of Objective:

Candidates should be able to verify the integrity of filesystems, monitor free
space and inodes, and repair simple filesystem problems. This objective in-
cludes the commands required to maintain a standard filesystem, as well as
the extra data associated with a journaling filesystem.

Key files, terms, and utilities include:

du df fsck e2fsck mke2fs
debugfs dumpe2fs tune2fs

Resources of Interest:

TBA

1.104.3 Control mounting and unmounting filesystems [3]
Statement of Objective:

Candidates should be able to configure the mounting of a filesystem. This ob-
jective includes the ability to manually mount and unmount filesystems, con-
figure filesystem mounting on bootup, and configure user mountable remov-
able filesystems such as tape drives, floppies, and CDs.

Key files, terms, and utilities include:

/etc/fstab mount umount

Resources of Interest:

TBA

1.104.4 Managing disk quota [1]
Statement of Objective:

Candidates should be able to manage disk quotas for users. This objective
includes setting up a disk quota for a filesystem, editing, checking, and gener-
ating user quota reports.

Key files, terms, and utilities include:

quota edquota repquota quotaon

14

Resources of Interest:

http://www.linuxdoc.org/HOWTO/mini/Quota.html: The Quota mini-HOWTO

1.104.5 Use file permissions to control access to files [3]
Statement of Objective:

Candidates should be able to control file access through permissions. This ob-
jective includes access permissions on regular and special files as well as direc-
tories. Also included are access modes such as suid, sgid, and the sticky bit, the
use of the group field to grant file access to workgroups, the immutable flag,
and the default file creation mode.

Key files, terms, and utilities include:

chmod umask chattr

Resources of Interest:

TBA

1.104.6 Manage file ownership [2]
Statement of Objective:

Candidates should be able to control user and group ownership of files. This
objective includes the ability to change the user and group owner of a file as
well as the default group owner for new files.

Key files, terms, and utilities include:

chmod chown chgrp

Resources of Interest:

TBA

1.104.7 Create and change hard and symbolic links [2]
Statement of Objective:

Candidates should be able to create and manage hard and symbolic links to a
file. This objective includes the ability to create and identify links, copy files
through links, and use linked files to support system administration tasks.

Key files, terms, and utilities include:

ln

1.106. (2.6)BOOT, INITIALISATION, SHUTDOWN AND RUNLEVELS [6] 15

Resources of Interest:

TBA

1.104.8 Find system files & place files in the correct location
[2]

Statement of Objective:

Candidates should be thoroughly familiar with the Filesystem Hierarchy Stan-
dard, including typical file locations and directory classifications. This objec-
tive includes the ability to find files and commands on a Linux system.

Key files, terms, and utilities include:

find locate slocate updatedb
whereis which /etc/updatedb.conf

Resources of Interest:

TBA

1.106 (2.6)Boot, Initialisation, Shutdown and Run-
levels [6]

1.106.1 (3) Boot the system
Statement of Objective:

Candidates should be able to guide the system through the booting process.
This includes giving commands to the boot loader and giving options to the
kernel at boot time, and checking the events in the log files.

Key files, terms, and utilities include:

dmesg /var/log/messages
/etc/conf.modules or /etc/modules.conf
LILO GRUB

Resources of Interest:

TBA

1.106.2 Change runlevels and shutdown or reboot system [3]
Statement of Objective:

Candidates should be able to manage the runlevel of the system. This objec-
tive includes changing to single user mode, shutdown or rebooting the sys-
tem. Candidates should be able to alert users before switching runlevel, and

16

properly terminate processes. This objective also includes setting the default
runlevel.

Key files, terms, and utilities include:

shutdown init /etc/inittab

Resources of Interest:

TBA

1.108 (1.8) Documentation [8]
1.108.1 Use and manage local system documentation [5]
Statement of Objective:

Candidates should be able to use and administer the man facility and the ma-
terial in /usr/share/doc/. This objective includes finding relevant man
pages, searching man page sections, finding commands and man pages re-
lated to them, and configuring access to man sources and the man system. It
also includes using system documentation stored in /usr/share/doc/ and
determining what documentation to keep in /usr/share/doc/.

Key files, terms, and utilities include:

man apropos whatis MANPATH

Resources of Interest:

TBA

1.108.2 Find Linux documentation on the Internet [2]
Statement of Objective:

Candidates should be able to find and use Linux documentation. This objective
includes using Linux documentation at sources such as the Linux Documenta-
tion Project (LDP), vendor and third-party websites, newsgroups, newsgroup
archives, and mailing lists.

Key files, terms, and utilities include:

not applicable

Resources of Interest:

TBA

1.111. (2.11) ADMINISTRATIVE TASKS [24] 17

1.108.3 Write System Documentation [1]
Statement of Objective:

Write documentation and maintain logs for local conventions, procedures, con-
figuration and configuration changes, file locations, applications, and shell
scripts.

Key files, terms, and utilities include:

not applicable

Resources of Interest:

TBA

Note

Difficult to test.

1.111 (2.11) Administrative Tasks [24]
1.111.1 Manage users and group accounts and related system

files [7]
Statement of Objective:

Candidate should be able to add, remove, suspend and change user accounts.
Tasks include to add and remove groups, to change user/group info in passwd/group
databases. The objective also includes creating special purpose and limited ac-
counts.

Key files, terms, and utilities include:

chageg passwd groupadd groupdel groupmod grpconv grpunconv passwd
pwconv pwunconv useradd userdel usermod /etc/passwd /etc/shadow
/etc/group /etc/gshadow

Resources of Interest:

Chapter 9 - Managing User Accounts: The Linux System Administrators’ Guide
Manpages for useradd usermod userdel groupadd groupmod groupdel user-

add passwd chage

1.111.2 Tune the user environment and system environment
variables [4]

Statement of Objective:

Candidate should be able to modify global and user profiles. This includes set-
ting environment variables, maintaining skel directories for new user accounts
and setting command search path with the proper directory.

18

Key files, terms, and utilities include:

env export set unset /etc/profile /etc/skel

Resources of Interest:

TBA

1.111.3 Configure and use system log files to meet administra-
tive and security needs [3]

Statement of Objective:

Candidate should be able to configure system logs. This objective includes
managing the type and level of information logged, manually scanning log
files for notable activity, monitoring log files, arranging for automatic rotation
and archiving of logs and tracking down problems noted in logs.

Key files, terms, and utilities include:

logrotate tail -f /etc/syslog.conf /var/log/*

Resources of Interest:

TBA

1.111.4 Automate system administration tasks by scheduling
jobs to run in the future [4]

Statement of Objective:

Candidate should be able to use cron or anacron to run jobs at regular inter-
vals and to use at to run jobs at a specific time. Task include managing cron
and at jobs and configuring user access to cron and at services.

Key files, terms, and utilities include:

at atq crontab /etc/anacrontab /etc/at.deny /etc/at.allow
/etc/crontab /etc/cron.allow /etc/cron.deny /var/spool/cron/*

Resources of Interest:

TBA

1.111.5 Maintain an effective data backup strategy [3]
Statement of Objective:

Candidate should be able to plan a backup strategy and backup filesystems
automatically to various media. Tasks include dumping a raw device to a file
or vice versa, performing partial and manual backups, verifying the integrity
of backup files and partially or fully restoring backups.

1.111. (2.11) ADMINISTRATIVE TASKS [24] 19

Key files, terms, and utilities include:

cpio dd dump restore tar

Resources of Interest:

TBA

1.111.6 Maintain system time [3]
Statement of Objective:

Candidate should be able to properly maintain the system time and synchro-
nise the clock over NTP. Tasks include setting the system date and time, setting
the BIOS clock to the correct time in UTC, configuring the correct timezone
for the system and configuring the system to correct clock drift to match NTP
clock.

Key files, terms, and utilities include:

date hwclock ntpd ntpdate /usr/share/zoneinfo /etc/timezone
/etc/localtime /etc/ntp.conf /etc/ntp.drift

Resources of Interest:

TBA

20

Part II

Resources

21

Chapter 103

GNU & Unix Commands

Old number: (1.3)
Weight: [30]

Work on the command line [4]

Process text streams using filters [7]

Perform basic file management [2]

Use streams, pipes, and redirects [3]

Create, monitor, and kill processes [7]

Modify process execution priorities [2]

Search text files using regular expressions [3]

Perform basic file editing using vi [2]

23

24 CHAPTER 103. GNU & UNIX COMMANDS

103.1 Work on the command line [4]

103.2. PROCESS TEXT STREAMS USING FILTERS [7] 25

103.2 Process text streams using filters [7]
103.2.1 Text Filter Exercise
First catch some text

Locate a section of text to practice filtering through various filters. For example
save the last 12 lines of the GPL license in a temporary file. Edit the file with
vi and add some tabs and some extra blank lines. Also duplicate a few lines.
Add some carriage returns to the ends of a few lines (in vi do this in edit mode
with a Cntl-v Cntl-m. They should show up as M̂s in vi).

$ locate gpl-lic
/usr/share/doc/HTML/en/common/gpl-license
...
$ tail -12 /usr/share/doc/HTML/en/common/gpl-license > /tmp/some.txt
$ cd /tmp

The file some.txt

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989ˆM
Ty Coon, President of ViceˆM

This General Public License does not permit incorporating your program into
This General Public License does not permit incorporating your program into
This General Public License does not permit incorporating your program into
This General Public License does not permit incorporating your program into

proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

cat the file

Have a look at the man page for cat.

• Plain cat the file:

$ cat some.txt

• cat the file with all lines numbered:

$ cat -n some.txt

• cat the file with non-blank lines numbered:

$ cat -b some.txt

• Check to see if there are any non printing characters:

26 CHAPTER 103. GNU & UNIX COMMANDS

$ cat -v some.txt
...

<signature of Ty Coon>, 1 April 1989ˆM
...

• Display any tabs:

$ cat -T some.txt
...

Ty Coon, ˆIPresident ˆIof ˆIVice
...

• Do a -vET all at once:

$ cat -A some.txt
...

<signature of Ty Coon>, 1 April 1989ˆM$
Ty Coon, ˆIPresident ˆIof ˆIViceˆM$

...

• Strip out surplus blank lines:

$ cat -s some.txt

tac the file

Have a look at the man page for tac.
Try it out.

Remove duplicate lines with uniq

Have a look at the man page for uniq.

• Plain uniq

$ uniq some.txt

• Show the repetition count:

$ uniq -c some.txt

• Print only the repeated lines:

$ uniq -dc some.txt

Print lines from the beginning of a file with head

Have a look at the man page for head.
Try it out on gpl-license.

103.2. PROCESS TEXT STREAMS USING FILTERS [7] 27

Print lines from the end of a file with tail

Have a look at the man page for tail.

• Try it out on gpl-license.

• Try the follow option:

$ tail -f /var/log/messages

Create a message in another console to see it work.

Isolate fields with cut

Have a look at the man page for cut.

• Use cut to display only the gecos field and the shell field of the passwd
file:

$ cut -d ":" -f5,7 /etc/passwd

Format the text with fmt

Have a look at the man page for fmt.

$ fmt -w 50 some.txt

$ fmt -t -w 60 some.txt

merge lines of files using paste

Have a look at the man page for paste.
Create two files and merge them.

$ cat > first
one
two
three
four
ˆD

$ cat > second
this
that
these and
those

$ paste first second

28 CHAPTER 103. GNU & UNIX COMMANDS

103.3 Perform basic file management [2]

103.4. USE STREAMS, PIPES, AND REDIRECTS [3] 29

103.4 Use streams, pipes, and redirects [3]

30 CHAPTER 103. GNU & UNIX COMMANDS

103.4.1 Create, monitor, and kill processes [7]

103.4. USE STREAMS, PIPES, AND REDIRECTS [3] 31

103.4.2 Modify process execution priorities [2]

32 CHAPTER 103. GNU & UNIX COMMANDS

103.5 Search text files using regular expressions [3]
Fun with Regular Expressions by Adrian J. Chung

http://thelinuxgurus.org/regexp.html

103.6. PERFORM BASIC FILE EDITING USING VI [2] 33

103.6 Perform basic file editing using vi [2]

34 CHAPTER 103. GNU & UNIX COMMANDS

Chapter 104

Devices, Linux Filesystems &
FHS

Old number: (2.4)
Weight: [21]

Create partitions and filesystems [3]

Maintain the integrity of filesystems [5]

Control mounting and unmounting filesystems [3]

Managing disk quota [1]

Use file permissions to control access to files [3]

Manage file ownership [2]

Create and change hard and symbolic links [2]

Find system files and place files in the correct loca-
tion [2]

35

36 CHAPTER 104. DEVICES, LINUX FILESYSTEMS & FHS

104.1 Create partitions and filesystems [3]

104.2. MAINTAIN THE INTEGRITY OF FILESYSTEMS [5] 37

104.2 Maintain the integrity of filesystems [5]

38 CHAPTER 104. DEVICES, LINUX FILESYSTEMS & FHS

104.3 Control mounting and unmounting filesystems
[3]

104.4. MANAGING DISK QUOTA [1] 39

104.4 Managing disk quota [1]

40 CHAPTER 104. DEVICES, LINUX FILESYSTEMS & FHS

104.5 Use file permissions to control access to files
[3]

104.5.1 Ken Caldwell’s Summary: Use file permissions to con-
trol access to files

Linux is a multi user operating system and therefore needs to provide a system
whereby the users can control access to their files.

All users are given a unique User IDentification number (UID) and are as-
signed to at least one group(of users). Each group is identified by a Group
IDentification number (GID). Frequently users are assigned to a group con-
taining only one member (themselves) as their primary group. The system
administrator can add a user to other groups such as may be convenient for
example ”sales”, ”engineering”, ”finance” or ”management”

Not all ”users” of the system are natural people others such as bin, daemon,
lp, fetchmail and nobody also exist.

About file access permissions
Any file created by a user will be owned by that user and belong to the

current group of that user. That is to say the file will be tagged with its cre-
ator’s UID and GID. The file will also be tagged with its (default) permissions
according to the umask of its creator.

The permissions pertaining to an ordinary file are the permission to Read
the file, the permission to edit or delete the file (Write) and the permission to
eXecute the file. These permissions are specified for: 1 The file’s owner (ie the
User who created the file) 2 Members of the Group associated with the file. (as
determined by the GID) 3 all Others

Permissions are shown in the long format output of the ls command as a
nine character string such as, for example, rwxr-x–x. The first three characters
represent the permissions of the User who created the file. In this case permis-
sion to Read, Write and eXecute the file. Members of the Group have Read and
eXecute permission while Others have only eXecute permission. Permissions
can also be expressed as an octal number with one digit for the user, one for
the group and one for the others. Read permission is given a value of 4, write
permission a value of 2 and execute permission a value of 1. In our previous
example the file could be described as having the permissions 751.

Permissions are interpreted slightly differently when applied to directories.
The read permission is interpreted to mean the ability to list the directory. The
write permission is interpreted to mean the ability to write files to, or delete
files from, the directory. The execute permission allows a user to cd to that
directory or to include it in a path to a directory to which you wish to change.

The initial permissions of a file upon creation are determined by subtracting
the user’s umask from 777. The default umask is usually 002 on systems where
users have their own exclusive group or 022 otherwise. In the former case files
will be created with rwxrwxr-x permissions and in the latter case rwxr-xr-x.

The permissions of a file may be altered by the file’s owner by means of the
chmod command. The chmod command is invoked as:

$ chmod (required change) filename
The bit in brackets can be either the octal value of the new permissions e.g.

644 or a string made up of three elements. The first element is one or more of

104.5. USE FILE PERMISSIONS TO CONTROL ACCESS TO FILES [3] 41

u, g, o or a standing for User, Group, Others or All. The second element is +,
- or = meaning add the designated access, remove the designated access or set
exact access specified. The third element is the access type ie one or more of
r,w or x.

There are three further access modes which we haven’t discussed so far.
They are SUID, SGID and the sticky bit. These are also expressed as an octal
digit, 4 for SUID, 2 for SGID and 1 for the ”sticky bit”. Thus an executable file
which we have previously described as having permissions 775 could more
exactly be described as having permissions 0755. If the file was SUID the de-
scription would be 4755. Again the meanings are different for ordinary files
and directories.

An executable file with the SUID bit set runs with the UID of the file owner
instead of inheriting the UID of the parent process. Similarly for the SGID bit.
The ”sticky bit” has no meaning on Linux systems when applied to ordinary
files. If the ”sticky bit” is set on a directory then only the owner of a file may
delete it from that directory even if the directory is world writable. This is most
often seen on the /tmp directory. If the SGID bit is set on a directory then all
files created in that directory will be assigned the GID of the directory rather
than the GID of the user. Another way of creating files with a desired GID is to
change the user’s GID with the newgrp command.

42 CHAPTER 104. DEVICES, LINUX FILESYSTEMS & FHS

104.6 Manage file ownership [2]
104.6.1 Ken Caldwell’s Summary: Managing file ownership
The UID and/or the GID of a file may be changed by the file’s owner by means
of the chown command. man chown for all the options but typically invoked
as:

$ chown newowner:newgroup filename
or:
$ chown 314:42 filename
chgrp is similar but may only be used to change the group.

104.7. CREATE AND CHANGE HARD AND SYMBOLIC LINKS [2] 43

104.7 Create and change hard and symbolic links
[2]

44 CHAPTER 104. DEVICES, LINUX FILESYSTEMS & FHS

104.8 Find system files and place files in the correct
location [2]

104.8.1 Ken Foskey’s Summary: Using find

:vi tw=72
...heading ... The find command.
The find command is one of the fundamental tools of Unix. It is a tool that

is constantly rediscovered as you perform more and more complex operations
with it. The man page of this simple tool is 555 lines long.

The most basic use of find is:
find ¡directory¿ -name ”<mask>”
To find a missing file somewhere in you home directory
find -name missing.file
where is shorthand for your home directory. You can also use masks like

”*.txt.gz” but you must put it in quotes.
Why do you have to put it in quotes?
...pause for discussion from floor...
When you use an * in a bash command line it is interpreted as a file ex-

pansion and it is looked for in the current directory and if it does exist it is
substituted before the command is sent to find. If it is not found then your
shell may generate an error message (for example csh, I think).

... page ...
According to the man page ’find - search for files in a directory hierarchy’

This is true but you can also find directories as well, like the filesystems .
First we will start with some basic options:
Doing options: -print list the filename (default, never really use it). -exec

run a command -ok run a command after prompting for confirmation. -ls list
file like ‘ls -dils‘, is a lot of file information.

Advanced doing options, I am sure you will use these one day:
-prune don’t descend past this directory. -printf Print a filename based on

format like C printf. -print0 print but end with a null character. -fprintf ¡fn¿
print a format string to a filename, (scripting??) -fprint ¡fn¿ print filenames to
a file. -fls ¡fn¿ ls to a file

Options on what entries we select:
Most of these options take a number, +number, -number. A little explana-

tion is required first.
picking one option, -atime:
-atime 2 Will pick any file accessed two days ago. -atime -2 Will pick any

file access more than two days ago -atime +2 Will pick any file accessed in the
last day.

** file date and time
Some basic stuff based on the file details itself.
-atime n files on access date -ctime n files on creation date (note chmod

mucks this up) -mtime n files on modification date
-anewer n files on access date based on another file. -cnewer n files on

creation date based on another file. -newer n files on modification date based
on another file.

104.8. FIND SYSTEM FILES AND PLACE FILES IN THE CORRECT LOCATION [2]45

example: delete all files older than 7 days in the /data directory who have
a .A extension.

Write the solution here.
A script may run a command and then ’touch’ a tag file to give a timestamp

when it was run. assume that the last thing a script does is touch modifica-
tion.tag in the /parms directory. Write a command line that lists all details of
files modified in the /apps/source/ directory based on this tag file.

.... pause to get suggestions from floor... lecturers note solution is find
/data -mnewer /parms/modification.tag -ls....

Write solution here.
There is also a amin, cmin and mmin version of the above.
** Owner and group.
One problem with the Unix authentification system, when you delete a

userid you end up with magic numbers on a directory listing. It is handy to be
able to change the ownership on all files from the exiting staff member to the
new person working on those projects.

-nouser users numeric id does not have and entry in /etc/passwd -nogroup
group numeric id does not have an entry in /etc/group -uid n User by number
-user name User by name -gid n Group by number -group name Group by
name

I recently converted from Redhat to Debian. I installed a new harddisk
and mounted the old one as /mnt/old1. I notice that when I do ls -al I get a
username of 500 in the directory listing. Change all the occurrences of 500 to
the username of ken.

.... lecturers note solution is AS ROOT

find /mnt/old1 -uid 500 -exec chown ken {} \;....

Write solution here
** Inode number and links
You have a directory listing, the hard link count is greater than 1. ... lectur-

ers note wait and ask class how we know this
You have no idea where the other hard link is and you want to locate the

other version to see what impact a change may have.
-inode n
... lecturers note, I have no idea how to do this
Write solution here
——————————————————-
Advanced options on what entries we select:
-iregex Use regex rather than standard file masks.
Options on how we go through the directories: -xdev don’t go into other

file systems.

46 CHAPTER 104. DEVICES, LINUX FILESYSTEMS & FHS

104.8.2 Andrew Eager’s Summary: Using locate, updatedb
and slocate

SLOCATE - Secure Locate
LOCATE - Normal Locate (Normally symlinked to slocate)
Slocate is used to find files on the system without actually having to search

the entire directory tree. A database of all files on the system is created and is
then used by slocate to reveal the files actual location. It is important to note
that slocate may return a result which is no longer valid since the directory
structure may have been modified since the slocate database was last created.
For example, you create a file called poobar.txt, create the slocate database and
then remove poobar.txt. Slocate will still return poobar.txt?s original location
until the slocate database is recreated.

Slocate can be used in two modes:

• Search mode:- To locate an actual file within the database

• Database creation mode:- To build the database

Search usage:

slocate [-qi] [-d <path>] [-r <regexp>] <search string>...

-q Quiet mode. Suppress error messages.

-i Does a case insensitive search.

-d Specify a database to use.

-r Pass a regular expression instead of a search string.

Examples:

locate ls $ locate ls ←↩

...
/etc/X11/xkb/symbols/xfree68/ataritt

/etc/X11/xkb/symbols/xfree68/amiga
/etc/alternatives/tclsh
...

locate -r "/ls$" $ locate -r "/ls$" ←↩

/home/geoffrey/tafe/mos/compress/ls
/usr/lib/bitchx/help/8_Scripts/ls
/bin/ls

The above example illustrates the need for a regex option to locate. In the
first example there will be lots of hits. In the second there is only one (the actual
ls command).

As well as searching for a file in the database, locate can also build the
search database.

104.8. FIND SYSTEM FILES AND PLACE FILES IN THE CORRECT LOCATION [2]47

Database Creation Usage:

As well as searching for a file in the database, slocate can also build the search
database.

-u Create slocate database starting at path /.

-U <dir> Create slocate database starting at path < dir >.

-c Parse original GNU Locate’s /etc/updatedb.conf

-e <dir1...> Exclude directories from the slocate database when using the -u or -U options.

-f <fs...> Exclude file system types from the slocate database

-l Security level. 0–> security off, 1–> security on

-q Quiet mode. Error messages are suppressed.

-o <file> Specify the name of the database file to create

-v Be verbose

Examples

• Create a database for all directories under /usr and place the resulting
database file into slocate.db in andy’s home directory.

slocate -U /usr -o /home/andy/slocate.db ←↩

• Create a database for all directories under /usr, excluding directories
under /usr/man and place the resulting database file into slocate.db in
andy?s home directory.

slocate -U /usr -e /usr/man -o /home/andy/slocate.db ←↩

Update slocate database—update

updatedb is simply a link to slocate that implies the -u option. (Excerpt from
the man page:- man updatedb)

$ ls -l ‘which updatedb‘ ←↩

lrwxrwxrwx 1 root root 7 Mar 27 10:44 /usr/bin/updatedb -> slocate*

updatedb is typically executed periodically via cron.

/etc/updatedb.conf

• The updatedb (or slocate) tool can use a configuration file to decide
which directories and file systems are included when the database is cre-
ated. This file is normally located in /etc/updatedb.conf

• The following is a list of keywords that are recognised by updatedb (slo-
cate) and their equivalent command line options

48 CHAPTER 104. DEVICES, LINUX FILESYSTEMS & FHS

PRUNEFS <fs type1 fs type2...> - Option -f

PRUNEPATHS <dir1 dir2 dir3...> - Opion -e

• Example updatedb.conf

PRUNEFS="devpts NFS nfs afs proc smbfs autofs auto iso9660"
PRUNEPATHS="/tmp /usr/tmp /var/tmp /afs /net?
export PRUNEFS
export PRUNEPATHS

slocate Exercises

1. Create an slocate database in your home directory including all direc-
tories from / down.

2. Using the database created in step 1, locate all files with rm in the file-
name

3. Using the database created in step 1, locate the executable file rm using a
regex. (ie /some/path/rm)

4. Create an slocate database in your home directory include all directories
from / down but excluding the /bin directory.

5. Repeat (2) and (3) above. Do you notice anything different ?

6. After backing up your existing /etc/updatedb.conf, say

cp /etc/updatedb.conf /etc/updatedb.conf.orig ←↩

edit /etc/updatedb.conf to perform the same actions as in step (4).

7. When you have finished this exercise restore your original /etc/updatedb.conf.

Chapter 111

Administrative Tasks

111.5 Maintain an effective data backup strategy [3]
111.5.1 Backup Overview
Prepared by Grant Parnell

Decide what data is important and how long you can do without it.

• Is this used 24 x 7 or just business hours?

• During business hours how long can you do without it? 4 hours, 30 min-
utes, 5 minutes?

• How up-to-date is it required to get you running in an emergency?

• Are you backing up for archival or high availability or espionage?

Examples of Data

Static: Configurations of running servers. You need these 24x7 but they don’t
change much.

Databases / Transactions - financial & otherwise: These are updated frequently
and need to balance. Associated with these are logs and duplication and
other means of rollback and integrity checking. With databases it’s of-
ten a good idea to dump them in a good portable format, especially if
the inbuilt format is not cross platform or cross version compatible. EG
’mysqldump mydata ¿mydata.dump’ will give you a text file which can
be used on most mysql versions and possibly adapted to other database
packages.

Logs: People don’t tend to read them unless something goes wrong in which
case they’re valuable. These need to be kept but don’t need to be restored
in a hurry.

49

50 CHAPTER 111. ADMINISTRATIVE TASKS

Home directories: This is a mixed bag of everything but some policies could
be instated to make the admin’s life easier. EG Making specific sub-
directories for things and assigning them different backup/restore pri-
orities. Often the existence of a home directory is more important than
the rest of the contents as it may make a user unable to login without it.

Code repositories: Programmers should be accustomed to doing regular back-
ups anyway, they often need to revert to an old version to figure out what
they broke. Any tools used such as CVS that have a central repository
should be backed up almost as often as programmers commit code, at
least once a day but they could probably cope with it being missing for
half a day.

High availability - read only: Websites frequently used by your clients. They
can contain dynamic data but customers don’t update it. This sort of
scenario lends itself to frequent replication to a backup server.

High availability - interactive: Taking a website again, this one might allow
the customer to do such things as place orders. The website maintains
some state information to allow building of an order. This is the most
difficult, the state information can be stored in a replicated database. In
the event of web server failure the other one comes into play and the cus-
tomer may have to login again but the information is kept. (Otherwise
complex designs and expensive hardware can be used to seamlessly mi-
grate the state to the other webserver).

Important Linux directories
/var/spool/mail - daily backup
/var/lib/mysql - databases - backup the dumps, and possibly

the binary.
/var/log ? - from "don’t care" to "backup daily"
/etc - backup config changes
/home - be selective, but if you can’t backup daily.
/home/<user>/mail - contains the user’s mail folders

(may also be ’Mail’ or ’Maildir’)
/home/<user>/.ssh - If you login using ssh keys only, this is a

must have.
/usr/local - locally installed apps & data

Application specifics

111.5.2 Backup & Restore methods
Copy the files to another directory

This is the poor mans backup and does not offer much peace of mind. It does
protect against accidental deletion and corruption by users. One advantage is
that it can be very quick for things such as log files. You can also keep multiple
copies, one for every day of the week for example. See /etc/logrotate.conf.

Backup to a standby partition

This has about the same level of peace of mind as the above. The backup par-
tition can be left un-mounted after the backup. The backup is slower than the

111.5. MAINTAIN AN EFFECTIVE DATA BACKUP STRATEGY [3] 51

above but the restore operation can be quick. See also ”Broken Mirror” method
below.

Backup to tape

This is probably the most common backup used in the commercial world. It’s
easy to backup the lot every day provided you have the tape capacity. If you
don’t, you become more selective as to what to backup. There’s a variety of
software to do this but there’s 3 main basic systems. Tar, cpio and dump. Often
commercial software uses these basic systems and provide for labelling and
indexing as well as multi-server capability from a simple GUI. The reason for
using the basic systems is you can restore from them if you have to.

Backup to standby disk

This can offer peace of mind and a fairly cheap backup for people that don’t
require 24x7 service. Basically a removable drive bay houses another hard disk
of similar capacity and the entire system is backed up. This can be done par-
tition by partition or file by file using dd, cpio or rsync. Additional steps can
be taken to ensure that the backup is also bootable. The backup drive should
be removed once done and treated like a tape. The disadvantage here is that
you most likely will need to power down the system twice for one backup. Al-
ternately, if you have an external USB or fire-wire storage medium it becomes
possible to do this without downtime.

Backup to CDROM/DVD

Under Linux (as far as I know) there’s no software to directly write data with-
out creating an image first. This means there must be sufficient space available.
It would be possible to create a bootable CD with restore software and a com-
pressed filesystem but I haven’t seen this. It may be OK if you don’t have a
large filesystem or you have a DVD writer or you’re not backing up every-
thing.

RAID System

Not strictly a backup but a RAID system can protect against hard drive failure
by providing redundancy. Data is written simultaneously to 2 or more hard
drives and can include parity information. It does not protect against corrupt
databases and people removing files. It will corrupt and remove files equally
well on all disks. Linux can do RAID in software very well but the ideal is a
hardware solution involving hot swapable disks so they can be replaced while
the system is fully running. A RAID system can mean the difference between
going on-site at 3am and saying ”Oh dear, we’ll replace that first thing in the
morning”. Just ensure that you do have a replacement readily available and do
not have to wait a week.

RAID Tape array

In a similar manner to RAID 5 disks, data is written in parallel to 5 tape drives
which increases throughput and data integrity.

52 CHAPTER 111. ADMINISTRATIVE TASKS

Backup Server

All of the methods discussed so far involve direct transfer from server to backup
medium. If you have a number of servers it may not be practical to install
backup devices on each. Another way is to remotely access the required medium
directly (/dev/rmt0) but arbitration of access can be an issue. An increasingly
popular way is to provide a super-server with a huge amount of disk space
capable of holding everything required by the other servers. Transferring the
data can happen at any time in either a batch or continuous process. A batch
would be say backup a whole directory at once whereas a continuous opera-
tion might be transmitting log information or database updates. The backup
server itself may then employ any one or more methods to perform backups
of itself, possibly based on some statistical analysis. An example of this is
a system called ADSM which employs RAID arrays, multiple tape drives, a
tape robot with barcode reader and intelligent software that tells the operators
which tapes are to go off-site and which ones it wants back. It essentially is
a huge cache that stores frequently changing data locally and stores old data
off-site.

Broken Mirror

If you’ve got about 100Gb of data on a mirrored pair of disks and only have a
10 minute backup window this may be for you. Basically you bring the system
down, unhook one of the mirrors and replace it with another set of drives and
bring the system up again. Mirroring starts from scratch during quiet time
and should be finished before load picks up again. With the drive set you
just un-hooked this can then be loaded into the standby server and backed up
to tape over the course of many hours. Some high end servers can perform
this operation without downtime as the hooking up can be done using inbuilt
hardware or such things as dual-port fire-wire drive bays. All that is required
in this case is an application shutdown, sync, dismount, remount, application
start type operation.

111.5.3 Software
dd - can be used to copy raw disk blocks, even to tape (yuk). eg dd if=/dev/hda1
of=/dev/hdb1

tar - Tape ARchive - you all know how to unpack tgz files, and maybe even
create them. Just remove the ’f’ option. It also can be an advantage not to use
compression as some drives have this built in. Also, a portion of the tape being
corrupt can ruin the rest of the data, whereas you can skip corrupt bits and
pickup the next file if not compressed. eg tar -c /home cd /tmp; tar -x

cpio - cp I/O - Similar capabilities of tar but different methodology. EG find
/home — cpio -oB ¿/dev/tape cd /tmp; cpio -idB ¡/dev/tape

rsync - remote sync - can sync a directory or whole filesystem by only trans-
ferring the changes between them. Be careful about trailing slashes. rsync -a
/home /backup/ rsync -a -e ssh /home backup@backup:/serverA/

Arkeia - commercial package BRU - commercial package Amanda - Open
source? Thousands more, some are client/server model and can backup mul-
tiple operating systems which is great.

111.5. MAINTAIN AN EFFECTIVE DATA BACKUP STRATEGY [3] 53

See http://www.linuxhelp.com.au/free.shtml for our generic CPIO backup
script.

111.5.4 Rotation & off-site strategies
It’s no good having a backup if it’s sitting next to the computer when there’s a
fire. You’ve got to have some off-site backups for really important stuff. On a
small scale a friend of mine has a backup of all my music CD’s I couldn’t live
without.

You could use this example strategy with any bulk medium but typically
people refer to tapes or a set of tapes and for convenience I’ll refer to a tape.
If you can fit everything on one tape good for you, life is easy, backup the lot
daily. If you don’t you’ll have to do an incremental backup (ie what’s changed)
daily and do a whole backup with multiple tapes weekly. Take the weekly
backup off-site home from work or over to a trustworthy friend’s place. Once
a month take a weekly backup to long term storage and keep it for 7 years or
something if it’s got all your tax info on it. It goes without saying the tapes
should be labelled full/incremental and a date, hostname and what sequence
in the set they are. Daily backup tapes may be rotated once a week with a new
tape supplied once a week for a specific day of the week. Eg week1 will be
all new tapes with one shipped off on Monday morning. week2 it’ll be a new
tape for Sunday morning, week3 it’ll be Saturday mornings tape that’s new.
Alternately, some people believe the weekly or monthly should be on a fresh
tape that’s never been used.

With this strategy you get reasonable rotation of the tapes keeping costs
down and for archival purposes, if you keep at least a months worth of data on
the server you’ll be able to go back to any point over the last few years and pull
out a file. If you keep at least 3 months on hard disk you’ll have 3 copies of this
on 3 separate tapes because believe it or not they do fail and it will happen to
you. To explain this more fully lets look at the following table and assume we
have some wages data every week and the company’s just started and there’s
4 weeks per month.
server has weekly tape has monthly tape has
wk1 wk1 wk1 -
wk2 wk1-2 wk1-2 -
wk3 wk1-3 wk1-3 -
wk4 wk1-4 wk1-4,month1 wk1-4,month1
wk5 wk1-5 wk1-5,month1 -
wk6 wk1-6 wk1-6,month1 -
wk7 wk1-7 wk1-7,month1 -
wk8 wk1-8 wk1-8,month1-2 wk1-8,month1-2
wk9 wk1-9 wk1-9,month1-2 -
wk10 wk1-10 wk1-10,month1-2 -
wk11 wk1-11 wk1-11,month1-2 -
wk12 wk1-12 wk1-12,month1-3 wk1-12,month1-3
wk13 wk2-13 wk2-13,month1-3 -
wk14 wk3-14 wk3-14,month1-3 -
wk15 wk4-15 wk4-15,month1-3 -
wk16 wk5-16 wk5-16,month2-4 wk5-16,month2-4
wk17 wk6-17 wk6-17,month2-4 -
wk18 wk7-18 wk7-18,month2-4 -
wk19 wk8-19 wk8-19,month2-4 -
wk20 wk9-20 wk9-20,month3-5 wk9-20,month3-5
wk21 wk10-21 wk10-21,month3-5 -
....

A complete backup and archive strategy should provide a means of going

54 CHAPTER 111. ADMINISTRATIVE TASKS

back to any point in time for critical data. Sometimes keeping the whole lot of
data is not required. For example you could drop the weekly information and
keep the monthly summary information and do a dedicated monthly backup
for this data. The monthly data may be optimised and arranged for search-
ing and an index provided but essentially contain all the information from the
weekly data.

Part III

Practical Exercises

55

Chapter 103

GNU & Unix Commands

Old number: (1.3)
Weight: [30]

Work on the command line [4]

Process text streams using filters [7]

Perform basic file management [2]

Use streams, pipes, and redirects [3]

Create, monitor, and kill processes [7]

Modify process execution priorities [2]

Search text files using regular expressions [3]

Perform basic file editing using vi [2]

57

58 CHAPTER 103. GNU & UNIX COMMANDS

103.1 Work on the command line [4]

103.2. PROCESS TEXT STREAMS USING FILTERS [7] 59

103.2 Process text streams using filters [7]

60 CHAPTER 103. GNU & UNIX COMMANDS

103.3 Perform basic file management [2]

103.4. USE STREAMS, PIPES, AND REDIRECTS [3] 61

103.4 Use streams, pipes, and redirects [3]

62 CHAPTER 103. GNU & UNIX COMMANDS

103.5 Create, monitor, and kill processes [7]

103.6. MODIFY PROCESS EXECUTION PRIORITIES [2] 63

103.6 Modify process execution priorities [2]
1. This exercise requires a few example processes to play around with, so

first we will create a few.

• Using the vi editor (for practice) make a file called a.c.
– Do not use the arrow keys—use h, j, k and l.
– Do not use the Backspace or Delete keys—use x.
– Be sure you are familiar with the use of i, a, o and O for entering

new text.
– For saving and quitting use each of ZZ, :w, q: and !.
– Delete, Yank and Put with dd, yy and p.
– Use u to undo, numerical modifiers (e.g. 5dd) and . to repeat.

• The file should contain this text:

#include <stdio.h>

int main()
{

int i = 0;

while (1) {
system("clear");
printf("Process a: %d\n", i);
++i;

}

return 0;
}

• Copy the file a.c to b.c and c.c.

$ cp a.c b,c.c ←↩

• Edit the printf() calls in files b.c and c.c to refer to Process
b: and Process c: respectively.
• Compile the programs:

$ gcc a.c -o a; gcc b.c -o b; gcc c.c -o c ←↩

2. Test your three programs.

• Start a program running in the background:

$./a ←↩

Process a: 400

• Suspend the program:

ˆz
[1]+ Stopped ./a

• Kill the job:

64 CHAPTER 103. GNU & UNIX COMMANDS

$ kill %1 ←↩

3. Use ps to view the processes.

• Run the processes in the background with differing degrees of nice-
ness:

$./a& nice ./b& nice -19 ./c& ←↩

• Glance at and absorb the manpage for ps. Note well that some op-
tions are preceded by a minus(-) and others are not. For example ps
a and ps -a do different things.
• Locate the processes using the ps command; try the a, u, x, and f

options separately and in combinations. e.g.:
$ ps aux |grep "./a " ←↩

• Kill and restart one of the processes (use the PID not “123456”:
$ kill 123456 ←↩

$ ps aux |grep "./a " ←↩

$./a&
$ ps aux |grep "./a " ←↩

4. Use top to view and modify the processes.

• Run top in the foreground:

$ top ←↩

• Look at the top help: Press h
• Sort by accumulated time: Press T
• Re-nice a process (Note: Users may only monotonically increase the

niceness processes, and (&&) they must own the process.):
– Press r
– PID to renice: 1234567890←↩

– Renice PID 1973 to value: 5←↩

5. Reniceing from the command line:

• After finding it’s PIDrenice one of your processes:
$ ps aux |grep "./c " ←↩

$ renice +15 1234567890

• Re-nice negatively—notice that only the superuser may reduce the
niceness of a process.
$ renice -10 1234567890 ←↩

renice: 1234567890: setpriority: Permission denied
$ su -c ’renice -10 1234567890’ ←↩

6. Kill off ./a, ./b and ./c.

103.7. SEARCH TEXT FILES USING REGULAR EXPRESSIONS [3] 65

103.7 Search text files using regular expressions [3]

66 CHAPTER 103. GNU & UNIX COMMANDS

103.8 Perform basic file editing using vi [2]
103.8.1 Introduction to vi
Note

Should you need a good sized text file to practice editing on, you will almost
certainly find a copy of the GPL License on your system. Be sure to deconse-
crate the file by renaming before munging it. You may locate one thus:

$ locate GPL ←↩

...
/usr/share/doc/netpbm-9.14/GPL_LICENSE.txt
/usr/share/doc/cdda2wav-1.10/GPL
/usr/share/doc/cdparanoia-alpha9.8/GPL
/usr/share/doc/stunnel-3.19/COPYRIGHT.GPL
/usr/share/doc/libesmtp-0.8.4/COPYING.GPL
...

Make a scratch copy at a suitable location and open it for editing:

$ cp /usr/share/doc/stunnel-3.19/COPYRIGHT.GPL ←↩

/tmp/munged_gpl.txt ←↩

$ vi /tmp/munged_gpl.txt ←↩

103.8.2 Vi tour
vi

Vi is the Unix editor, simply it is available on just about every Unix installation
by default. This is the reason that you have to have a minimum of basic vi
skills to allow you to change files when you favourite editor is not available,
boot disks have vi due to lack of space.

Please note that there are many implementations of vi, the baseline is a
very crude editor. This extends to a very extended and powerful VIM editor
available on most platforms. I use vim because I am restricted to vi on many
of the Unix systems I support, rather than trying to ’switch editors’ mentally I
have vi on every platform I use, including Windows.

vi is a mode editor

Vi is an editor and it is definitely not a friendly editing environment. In fact a
random typing of keys of the keyboard can render your text totally unreadable.
Vi has been around a long time it was created in an era where editors were
modal. The editor can be in three different unrelated states described below.

Input mode This is the mode where you simply type. You characters appear
in the text file as you type.

Command mode This is where character take on special significance, for ex-
ample ’i’ for insert ’D’ to delete to the end of the line.

103.8. PERFORM BASIC FILE EDITING USING VI [2] 67

Line mode This is the mode when you press a : in command mode, this is
where you can type some powerful (and sed like) commands to alter the
document.

Rather than bore you with yet another description I will give you a series
of exercises to work through showing each command. In the examples ¡esc¿
means to press the escape key. This will return you to command mode or
cancel an action in other modes.

Inserting text

There are at least three ways to insert text into a document in vi, the following
exercises will take you through the basic commands.

Exercise 1 - insert Create a text document, just to get you used to switching in
and out of the insert and command mode.

$ vi test.txt ←↩

ithis is the Linux course<return>
We want a few lines of txt to work with. <esc>

The i inserts text before the cursor.

Exercise 2 - open We want to add some extra text to the document, we want
to enter it on the line after the current line, we use the open command by
pressing o.

oI am adding an line after the current line.<esc>

Exercise 3 - append Now I want ot continue adding another sentence on the
current line. If I press ’i’ I will insert before the full stop, in this case I
want to append it after the full stop.

a I want to add another sentence.<esc>

You line should now look like:

I am adding an line after the current line. I want to
add another sentence.

Movement keys & multiplication

There are a huge number of ways to move around in vi, the arrow keys will not
always work . You should be aware of the single character work arounds for
these in case your terminal is not set up properly on the box you are ’telnet’ing
or ’ssh’ing from or to.

h Left one character *

j Down one line *

k Up one line *

68 CHAPTER 103. GNU & UNIX COMMANDS

l Left one character *

w Forward one word

b Back one word

e End of current word

G End of file *

nG Goto a particular line *

{ Back one paragraph

} Forward one paragraph

$ End of current line

ˆ First non blank character in line

0 Beginning of line (also |)

Ones marked with an asterisk are required by POMS, Personally I find
word movement is my main tool here. I also use the control keys to scroll
screens a far bit. These are listed on the printed cheat sheet.

ALL these movement commands can be prefixed by a number to multiply
the effect of the movement. To move up 99 lines enter 99k.

Note that some vi editor have a status on the bottom line, sometime it will
show that you have entered a multiplier, sometimes it is quiet but the results
are unexpected .

Exercise 4 - back In the previous exercise I have forgotten a word after the an
I wanted the word ’extra’. I have to go back that position in the line.
12b will get me back to the beginning of the word I want to insert before,
this is an example of a count followed by a command.
Warning on the counts it can repeat most commands whether it makes
sense or not at the time. For example enter the following:

4iextra <esc>

What happened? Why?
This is handy with asterisks 70i*<esc>, try it.
12b moves the cursor back 12 words. A word is a sequence of characters
separated by a space character like a ¡space¿ or a ¡tab¿ Also the punctua-
tion characters or ’.’, ’?’, ’;’ and so on.

Exercise 5 - general movement Edit a large text file on your system. You should
be able to do the following with two keystrokes.

• Jump to line 6
• Move 8 character to the right.
• Go to the end of the line

103.8. PERFORM BASIC FILE EDITING USING VI [2] 69

• Go to the beginning of the line.
• Jump to the top of the paragraph in the document (a paragraph is

delimited by blank lines.)

You should be able to do this with one keystroke

• Move to the left margin To the end of the line
• Move to the end of the file.

The undo command

The real vi command undo is very very limited. It does not allow for a lot of
recovery. There are two undo commands ’U’ and ’u’.

The lower case u will undo the last action that you have done. This includes
itself so it will cycle through doing and undoing.

The upper case U will undo the any change to the current line and restore
it back to its original state.

Extended vi editors such as vim will allow multiple lower case u undo com-
mands but do not rely on it on an unknown box. To get out of a problem you
simply have to quit without with ’:q!’.

No exercise here, I figure you will find this out without any help. Try both
commands. Check the difference.

Deleting changing and copying text

d Delete *

c Change *

x Delete one character

y Yank (copy text)

Ones marked with an asterisk are required by POMS, Personally I use single
character deletion all the time. I use line deletion all the time.

There delete command and yank command can be used with a movement
to delete all text within this movement. For example d$ will delete to the end of
the current line, y$ will yank it into a buffer. Delete will also store the deletion
in a buffer to get it back quickly just use paste describe later.

To delete or yank a line simply repeat the d or y. To delete a single line use
dd, to delete the current line and the next two use 3dd. To yank the next 10
lines use 10yy.

Exercise 6
Please your cursor in the middle of a line. Delete from the current position

to the beginning of the line with two keystrokes.
Delete from the current position to the end of the line.
Note that there is a shorthand for d$ (delete, move to end of line) by using

a capital D. Move to the centre of a line of text and try it.

70 CHAPTER 103. GNU & UNIX COMMANDS

Chapter 104

Devices, Linux Filesystems &
FHS

Old number: (2.4)
Weight: [21]

Create partitions and filesystems [3]

Maintain the integrity of filesystems [5]

Control mounting and unmounting filesystems [3]

Managing disk quota [1]

Use file permissions to control access to files [3]

Manage file ownership [2]

Create and change hard and symbolic links [2]

Find system files and place files in the correct loca-
tion [2]

71

72 CHAPTER 104. DEVICES, LINUX FILESYSTEMS & FHS

104.1 Create partitions and filesystems [3]
104.1.1 Using fdisk
Care must be taken using fdisk as any changes to your disk’s partition table
will make existing data on the disk unaccessible. There is debate about what
the “f” in fdisk stands for.

Using fdisk non-destructively on a hard disk

• View the partition table for the hard disk:

fdisk -l /dev/hda ←↩

Disk /dev/hda: 255 heads, 63 sectors, 3648 cylinders
Units = cylinders of 16065 * 512 bytes

Device Boot Start End Blocks Id System
/dev/hda1 * 1 768 6168928+ c Win95 FAT32 (LBA)
/dev/hda2 769 3648 23133600 5 Extended
/dev/hda5 769 780 96358+ 83 Linux

• Print the size of a partition in blocks (30G disk):

fdisk -s /dev/hda ←↩

29302560
fdisk -s /dev/hda5 ←↩

96358

Using fdisk on a diskette

Warning: it makes no sense to use fdisk on a floppy—this is just an exercise.

• Format the floppy disk:

fdformat /dev/fd0 ←↩

• Start fdisk using the floppy diskette:

fdisk /dev/hda ←↩

• Look at the menu:

Command (m for help): m ←↩

• Print the partition table:

Command (m for help): p ←↩

Disk /dev/fd0: 2 heads, 18 sectors, 80 cylinders
Units = cylinders of 36 * 512 bytes

Device Boot Start End Blocks Id System

104.1. CREATE PARTITIONS AND FILESYSTEMS [3] 73

• Use n for new and construct this partition table:

Device Boot Start End Blocks Id System
/dev/fd0p1 * 1 20 351 1 FAT12
/dev/fd0p2 21 25 90 83 Linux
/dev/fd0p3 26 80 990 5 Extended
/dev/fd0p5 26 30 81 83 Linux
/dev/fd0p6 31 70 711 83 Linux
/dev/fd0p7 71 80 171 83 Linux

• List the partition types:

Command (m for help): l ←↩

• Change the first partition to type 1:

Command (m for help): t ←↩

• Toggle the bootable flag on the first partition:

Command (m for help): a ←↩

Using cfdisk

cfdisk is reputably more user friendly than fdisk. There are some partition
adjustments that may require cfdisk.

Have a look at your floppy diskette partitions:
cfdisk /dev/fd0 ←↩

Using sfdisk

sfdisk is interactive partition editor.
Have a look at your floppy diskette partitions:

sfdisk /dev/fd0 ←↩

You may wish to Cntl-C out of this program if you wish not to edit the partition
table.

Using GNU parted

parted is a partition editor that can resize partitions.
• Have a look at your floppy diskette partitions:

parted /dev/fd0 ←↩

• Check the menu:

(parted) p ←↩

• Experiment on you partitioned floppy.

74 CHAPTER 104. DEVICES, LINUX FILESYSTEMS & FHS

104.2 Maintain the integrity of filesystems [5]

104.3. CONTROL MOUNTING AND UNMOUNTING FILESYSTEMS [3] 75

104.3 Control mounting and unmounting filesystems
[3]

76 CHAPTER 104. DEVICES, LINUX FILESYSTEMS & FHS

104.4 Managing disk quota [1]

104.5. USE FILE PERMISSIONS TO CONTROL ACCESS TO FILES [3] 77

104.5 Use file permissions to control access to files
[3]

78 CHAPTER 104. DEVICES, LINUX FILESYSTEMS & FHS

104.6 Manage file ownership [2]

104.7. CREATE AND CHANGE HARD AND SYMBOLIC LINKS [2] 79

104.7 Create and change hard and symbolic links
[2]

80 CHAPTER 104. DEVICES, LINUX FILESYSTEMS & FHS

104.8 Find system files and place files in the correct
location [2]

Part IV

Questions

81

104.103. (1.3) GNU & UNIX COMMANDS [30] 83

104.103 (1.3) GNU & Unix Commands [30]
104.103.1 Work on the command line [4]
104.103.2 Process text streams using filters [7]
104.103.3 Perform basic file management [2]
104.103.4 Use streams, pipes, and redirects [3]
104.103.5 Create, monitor, and kill processes [7]
104.103.6 Modify process execution priorities [2]
104.103.7 Search text files using regular expressions [3]

84

104.103.8 Perform basic file editing using vi [2]
1. How do you quit vi without saving? __________________

2. In vi command mode what does the p key do? ___________

3. The vi editor has three modes. Name them:

______________ ________________ ____________________

4. In vi insert mode what does the following key sequence do?
<esc>:wq←↩ ___

5. How do you search forward for the next occurrence of the word “from”
in vi. ________

6. What command will delete the next 23 lines of text in vi. ________

7. Which command inserts text into vi at the current cursor location?

(a) a

(b) f

(c) T

(d) i

8. Which way does cursor move when you press each of these keys in vi
command mode?

k _____________

h _____________

l _____________

j _____________

9. In vi command mode what does the u key do?

__

10. In the vi editor what does the term “yank” mean.?

__

104.103. (1.3) GNU & UNIX COMMANDS [30] 85

11. What do you type to repeat the last command? ________

12. In vi command mode to move a line from its current position to three
lines down the page you would enter:

(a) 3dd3lp

(b) ddk3p

(c) 1dd3p

(d) dd3kp

13. This command moves three lines of text into a vi buffer named a:

(a) "a3dd

(b) a3dd

(c) "add3

(d) A5dd

14. The G command does what? _______________________________

86

Part V

Meta

87

Chapter 105

Making Slides Using LATEX

105.1 Making a
• Install the acutex package for emacs

• Open a new document:

$ emacs my.slides.tex ←↩

• In emacs create a document environment: C-C C-E Enter for the default
(document) in the mini buffer.

• For document style enter: seminar

• For options enter: a4

• aaaaaaa

• dddddddd

• wwww

• cc

• aaaaaaa

• dddddddd

• wwww

• ccblah

blah de blah de blah

89

