
– General Linux 1 –
Use Streams, Pipes, and Redirects [3]

(Linux Professional Institute Certification)
a

.˜. Prepared by Andrew Eager
/V\
// \\ geoffrey robertson
@._.@ geoffrey@zip.com.au

$Id: gl1.103.4.slides.tex,v 1.2 2003/05/29 14:10:18 geoffr Exp $

aCopyright c© 2002,2003 Geoffrey Robertson. Permission is granted to make and distribute
verbatim copies or modified versions of this document provided that this copyright notice and
this permission notice are preserved on all copies under the terms of the GNU General Public
License as published by the Free Software Foundation—either version 2 of the License or (at
your option) any later version.

1

(1.3) GNU and UNIX Commands [30]
1.103.1 Work on the command line [4]

1.103.2 Process text streams using filters [7]

1.103.3 Perform basic file management [2]

1.103.4 Use streams, pipes, and redirects [3]

1.103.5 Create, monitor, and kill processes [7]

1.103.6 Modify process execution priorities [2]

1.103.7 Search text files using regular expressions [3]

1.103.8 Perform basic file editing operations using vi [2]

2

Objective

Candidate should be able to redirect streams and connect them in order to
efficiently process textual data. Tasks include redirecting standard input,
standard output, and standard error, piping the output of one command to
the input of another command, using the output of one command as
arguments to another command and sending output to both stdout and a file.

3

Key files, terms, and utilities

tee
xargs
<
<<
>
>>
|
‘‘

4

Resources of interest

5

STDIN, STDOUT & STDERR
• When a process is run it needs 3 things:

– An input device (ie a keyboard)
– An output device (ie a screen)
– An error device - somewhere to send critical errors (normally the

screen)

• Every process has 3 file descriptors
– fd 0 is for input
– fd 1 is for normal output
– fd 2 is for error/abnormal output

• By default these devices all default to your current tty

6

Default File Descriptor Assignments

1

2
0

process

stdin

stderr

stdout

• fd 0 == stdin (keyboard)

• fd 1 == stdout (screen)

• fd 2 == stderr (screen)

7

Redirection & Duplication Operators
• There are 3 operators used for redirection:

– File redirects: (<, >and >>operators)
– Pipelines (|operator)
– File descriptor duplication (>& operator)

8

File Redirect Operators
Each of the 3 file descriptors can be redirected to/from files as follows:

0

1

2

From file to fd 0

From fd 1 to file

From fd 2 to file>2

(Replace > with >> to append to a file)

>

<
Operator Action

Note that the redirect operators work with the file descriptors (0, 1 or 2) and
not with the physical device itself (/dev/tty).

9

Pipeline Redirect Operator
Consider the command cmd1 | cmd2. The pipe operator takes data sent
to stdout by cmd1 and sends it to the input file descriptor (fd 0) of cmd2:

1

2
0

cmd2

stdout

Note that the pipe connects stdout (which may or may not be associated
with fd 1) to fd 0 of the next command.

10

Example of the Pipeline Operator

stdin

1

2

cmd1

0

1

2

cmd2

0
stdout

stderr

stderr

cmd1 | cmd 2

Piping output of cmd1 into input of cmd2

11

File Descriptor Duplication Operator
A file descriptor can be made to be a copy of another descriptor. Consider
the command cmd 2>&1. This will make fd 2 become a copy of fd 1.

cmd 2>&1

fd 2 becomes a copy of fd 1

1

2
0

cmd

Duplicating a file descriptor

12

Examples of File Output Redirection
For the following examples, we use the two example files good and
nofile created thus:

$ echo "This is good" > good ←↩

$ rm nofile ←↩

And to test what output is going where, we use the following command line:

$ cat good nofile ←↩

which will produce:

This is good (stdout)
cat: nofile: No such file or directory (stderr)

13

Standard File Output Redirection

1

2

cat

0

out.txt

err.txt

1

2

cat

0

"This is good"

"cat: nofile: No such file or directory"

cat good nofile 2> err.txt

"This is good"

"cat: nofile: No such file or directory"

cat good nofile > out.txt

Redirecting stdout & stderr to different files

14

Output Redirection - Two at once

out.txt

1

2

cat

0

err.txt

cat good nofile > out.txt 2> err.txt

"cat: nofile: No such file or directory"

"This is good"

Redirecting stdout & stderr at the same time

15

Redirecting stdout & stderr

1

2

cat

0 cat good nofile > out−err.txt

out−err.txt

1

2

cat

0 cat good nofile > out−err.txt 2>&1

out−err.txt

out−err.txt
fd 2 becomes a copy of fd 1

Redirecting stdout & stderr to the same file

16

Duplicating before & after redirection

out−err.txt

1

2

cat

0

cat good nofile 2>&1 > out−err.txt

fd 2 becomes a copy of fd 1

out−err.txt

out−err.txt

cat good nofile > out−err.txt 2>&1

fd 2 becomes a copy of fd 1
1

2

cat

0

Just when you duplicate the fd is significant

17

Piping stdout to stdin

1

2

cat

0

out.txt

"This is good"

cat good nofile | sed −n p > out.txt

"cat: nofile: No such file or directory"

1

2
0

sed

Normal pipe from cat to sed

18

Piping stdout & stderr to stdin

out−err.txt

1

2

cat

0

cat good nofile 2>&1

1 2

1

2
0

sed

cat good nofile 2>&1 | sed −n −p > out−err.txt

1

2

cat

0

3

1

2

cat

0

cat good nofile

19

Piping stderr to stdin

1

2

cat

0

1

2

cat

0

1

2

cat

0

/dev/null

1

2
0

sed
err.txt

cat good nofile cat good nofile 2>&1

1 2

3

cat good nofile 2>&1 >/dev/null | sed −n p > err.txt

20

File Redirection Summary
• Redirect stdin from file:

– $ cat < input.txt ←↩

• Redirect stdout to file:
– $ cat good nofile > out.txt ←↩

• Redirect stderr to file:
– $ cat good nofile 2> err.txt ←↩

• Redirect stdout & stderr to file:
– $ cat good nofile > out-err.txt 2>&1 ←↩

OR
– $ cat good nofile 2> out-err.txt 1>&2 ←↩

21

File Redirection Summary
To append to a file instead of overwriting, simply replace >with >>

• Redirect stdout to file (append):
– $ cat good nofile >> out.txt ←↩

• Redirect stderr to file (append):
– $ cat good nofile 2>> err.txt ←↩

• Redirect stdout & stderr to file (append):
– $ cat good nofile >> out-err.txt 2>&1 ←↩

OR
– $ cat good nofile 2>> out-err.txt 1>&2 ←↩

22

Pipe Redirection Summary
• Pipe stdout to stdin:

– $ cat good nofile | sed -n p ←↩

• Pipe stdout & stderr to stdin
– $ cat good nofile 2>&1 | sed -n p ←↩

• Pipe stderr to stdin
– $ cat good nofile 2>&1 >/dev/null | sed -n p
←↩

23

A cool example - Swap stdout & stderr
In this example, we are going to swap stdout & stderr by using a temporary
fd as a holding buffer:

If we execute the command using a normal pipe:

$ cat good nofile | sed -n -p > stdout.txt ←↩

cat: nofile: No such file or directory

Now if we swap stdout & stderr:

$ cat good nofile 255>&1 1>&2 2>&255 | sed -n -p >
stdout.txt ←↩

This is good

24

The End

25

