
1.109.2

Customize or write simple scripts

Weight 3

Linux Professional Institute Certification — 102

Nick Urbanik <nicku@nicku.org>

This document Licensed under GPL—see section 19

2005 November

Outline

Contents

1 Context 2

2 Objectives 2

3 The shebang: #! 3

4 Making the script executable 4

5 Should you make a script SUID? 4

6 True and False 5

7 Shell Variables 5

8 Special Variables 7

9 Quoting 8

9.1 Quoting and Funny Chars . 8

9.2 Quoting . 8

10 Command Substitution 10

1. Context 1.109.2 2

11 The if statement 11

12 while statement 11

13 The for statement 12

14 The test program 13

14.1 Conditions . 13

15 Arithmetic 15

16 Input & Output 15

16.1 Output with echo . 15

16.2 Input with read . 15

17 Finding examples of shell scripts on your computer 16

18 Alerting about problems by email 17

19 License Of This Document 18

1 Context

Topic 109 Shells, Scripting, Programming and Compiling [8]

1.109.1 Customize and use the shell environment [5]

1.109.2 Customize or write simple scripts [3]

2 Objectives

Description of Objective

Candidate should be able to customize existing scripts, or write simple new (ba)sh scripts.

This objective includes using standard sh syntax (loops, tests), using command substitution,

testing command return values, testing of file status, and conditional mailing to the supe-

ruser. This objective also includes making sure the correct interpreter is called on the first

(#!) line of scripts. This objective also includes managing location, ownership, execution

and suid-rights of scripts.

Key files, terms, and utilities include:

while — shell builtin: does things repetively while a condition is true

3. The shebang: #! 1.109.2 3

for — shell builtin: does things repetively, once with each element of a list

test — used to construct a condition

chmod — an external command, to change the permission on a file

3 The shebang: #!

The Shebang: #!

• You ask the Linux kernel to execute the shell script

• kernel reads first two characters of the executable file

– If first 2 chars are “#!” then

– kernel executes the name that follows, with the file name of the script as a pa-

rameter

• Example: a file called find.sh has this as the first line:

#! /bin/sh

• then kernel executes this:

/bin/sh find.sh

• What will happen in each case if an executable file begins with:

– #! /bin/rm

– #! /bin/ls

For shell scripts, the interpreter is /bin/sh, so the first line of all our shell scripts is:

#! /bin/sh

If you make any typing mistake in the name of the interpreter, you will get an error message

such as “bad interpreter: No such file or directory.”

4. Making the script executable 1.109.2 4

4 Making the script executable

Making the script executable

To easily execute a script, it should:

• be on the PATH

• have execute permission.

How to do each of these?

• Red Hat Linux by default, includes the directory ∼/bin on the PATH, so create this

directory, and put your scripts there:

$ mkdir ∼/bin ←↩

• If your script is called script, then this command will make it executable:

$ chmod +x script ←↩

5 Should you make a script SUID?

Should you make a script SUID?

• Normally, when you run a script, the process is owned by you, and has the same access

rights as you

• If a script has the SUID permission, then:

– it does not matter who executes it!

– the owner of the process is the owner of the file

– This is very dangerous, especially if the owner of the file is root!

• Never make a shell script SUID, unless you really, really know what the risks are and

how to avoid them

• Instead, write it in a language such as Perl, with taint checking, and make it as simple

as possible.

• See Topic 1.114.1 Perform security administration tasks for details of manipulating

SUID/SGID permissions.

6. True and False 1.109.2 5

6 True and False

True and False

• Shell programs depend on executing external programs

• When any external program execution is successful, the exit status is zero, 0

• An error results in a non-zero error code

• To match this, in shell programming:

– The value 0 is true

– any non-zero value is false

• This is opposite from other programming languages

7 Shell Variables

Variables—1

• Variables not declared; they just appear when assigned to

• Assignment:

– no dollar sign

– no space around equals sign

– examples:

$ x=10 # correct

$ x = 10 # wrong: try to execute program called ‘‘x’’

• Read value of variable:

– put a ‘$’ in front of variable name

– example:

$ echo "The value of x is $x"

7. Shell Variables 1.109.2 6

Variables—Assignments

• You can put multiple assignments on one line:

i=0 j=10 k=100

• You can set a variable temporarily while executing a program:

$ echo $EDITOR

emacsclient

$ EDITOR=gedit crontab -e

$ echo $EDITOR

emacsclient

Variables—Local to Script

• Variables disappear after a script finishes

• Variables created in a sub shell disappear

– parent shell cannot read variables in a sub shell

– example:

$ cat variables

#! /bin/sh

echo $HOME

HOME=happy

echo $HOME

$./variables

/home/nicku

happy

$ echo $HOME

/home/nicku

Variables—unsetting Them

• You can make a variable hold the null string by assigning it to nothing, but it does not

disappear totally: $ VAR= ←↩ $ env | grep ’^VAR’ ←↩ VAR=

• You can make it disappear totally using unset:

$ unset VAR ←↩ $ env | grep ’^VAR’ ←↩

8. Special Variables 1.109.2 7

8 Special Variables

Command-line Parameters

• Command-line parameters are called $0, $1, $2, . . .

• Example: when call a shell script called “shell-script” like this:

$ shell-script param1 param2 param3 param4 ←↩

variable value

$0 shell-script

$1 param1

$2 param2

$3 param3

$4 param4

$# number of parameters to the program, e.g., 4

– Note: these variables are read-only.

Special Built-in Variables

• Both $@ and $* are a list of all the parameters.

• The only difference between them is when they are quoted in quotes—see manual

page for bash

• $? is exit status of last command

• $$ is the process ID of the current shell

• Example shell script:

#! /bin/sh

echo $0 is the full name of this shell script

echo first parameter is $1

echo first parameter is $2

echo first parameter is $3

echo total number of parameters is $#

echo process ID is $$

9. Quoting 1.109.2 8

9 Quoting

9.1 Quoting and Funny Chars

Special Characters

Character Meaning

∼ Home directory

‘ Command substitution. Better: $(...)

Comment

$ Variable expression

& Background Job

* File name matching wildcard

| Pipe

(Start subshell

) End subshell

[Start character set file name matching

] End character set file name matching

{ Start command block

; Command separator

\ Quote next character

’ Strong quote

" Weak quote

< Redirect Input

> Redirect Output

/ Pathname directory separator

? Single-character match in filenames

! Pipline logical NOT

〈space or tab〉 shell normally splits at white space

9.2 Quoting

Quoting

• Sometimes you want to use a special character literally; i.e., without its special mean-

ing.

• Called quoting

• Suppose you want to print the string: 2 * 3 > 5 is a valid inequality?

• If you did this:

$ echo 2 * 3 > 5 is a valid inequality

9.2 Quoting 1.109.2 9

the new file ‘5’ is created, containing the character ‘2’, then the names of all the files

in the current directory, then the string “3 is a valid inequality”.

Quoting—2

• To make it work, you need to protect the special characters ‘*’ and ‘>’ from the shell

by quoting them. There are three methods of quoting:

– Using double quotes (“weak quotes”)

– Using single quotes (“strong quotes”)

– Using a backslash in front of each special character you want to quote

• This example shows all three:

$ echo "2 * 3 > 5 is a valid inequality"

$ echo ’2 * 3 > 5 is a valid inequality’

$ echo 2 * 3 \> 5 is a valid inequality

Quoting—When to use it?

• Use quoting when you want to pass special characters to another program.

• Examples of programs that often use special characters:

– find, locate, grep, expr, sed and echo

• Here are examples where quoting is required for the program to work properly:

$ find . -name *.jpg

$ locate ’/usr/bin/c*’

$ grep ’main.*(’ *.c

$ i=$(expr i * 5)

More about Quoting

• Double quotes: "..." stop the special behaviour of all special characters, except for:

– variable interpretation ($)

– backticks (‘) — see slide 20

– the backslash (\)

• Single quotes ’...’:

– stop the special behaviour of all special characters

10. Command Substitution 1.109.2 10

• Backslash:

– preserves literal behaviour of character, except for newline; see slides §29, §24

– Putting “\” at the end of the line lets you continue a long line on more than one

physical line, but the shell will treat it as if it were all on one line.

10 Command Substitution

Command Substitution — $(...) or ‘...‘

• Enclose command in $(...) or backticks:‘...‘

• Means, “Execute the command in the $(...) and put the output back here.”

• Here is an example using expr:

$ expr 3 + 2

5

$ i=expr 3 + 2 # error: try execute command ‘3’

$ i=$(expr 3 + 2) # correct

$ i=‘expr 3 + 2‘ # also correct

Command Substitution—Example

• We want to put the output of the command hostname into a variable:

$ hostname

nicku.org

$ h=hostname

$ echo $h

hostname

• Oh dear, we only stored the name of the command, not the output of the command!

• Command substitution solves the problem:

$ h=$(hostname)

$ echo $h

nicku.org

• We put $(...) around the command. You can then assign the output of the com-

mand.

11. The if statement 1.109.2 11

11 The if statement

if Statement

• Syntax:

if 〈test-commands〉
then

〈statements-if-test-commands-1-true〉
elif 〈test-commands-2〉
then

〈statements-if-test-commands-2-true〉
else

〈statements-if-all-test-commands-false〉
fi

• Example:

if grep nick /etc/passwd > /dev/null 2>&1

then

echo Nick has a local account here

else

echo Nick has no local account here

fi

12 while statement

while Statement

• Syntax:

while 〈test-commands〉
do

〈loop-body-statements〉
done

• Example:

i=0

while ["$i" -lt 10]

do

echo -n "$i " # -n suppresses newline.

let "i = i + 1" # i=$(expr $i + 1) also works

done

13. The for statement 1.109.2 12

13 The for statement

for Statement

• Syntax:

for 〈name〉 in 〈words〉
do

〈loop-body-statements〉
done

• Example:

for planet in Mercury Venus Earth Mars \

Jupiter Saturn Uranus Neptune Pluto

do

echo $planet

done

– The backslash “\” quotes the newline. It’s just a way of folding a long line in a

shell script over two or more lines.

for Loops: Another Example

• Here the shell turns *.txt into a list of file names ending in “.txt”:

for i in *.txt

do

echo $i

grep ’lost treasure’ $i

done

• You can leave the in 〈words〉 out; in that case, 〈name〉 is set to each parameter in

turn:

i=0

for parameter

do

let ’i = i + 1’

echo "parameter $i is $parameter"

done

14. The test program 1.109.2 13

14 The test program

14.1 Conditions

Conditions—String Comparisons

• All programming languages depend on conditions for if statements and for while

loops

• Shell programming uses a built-in command which is either test or [...]

• Examples of string comparisons:

["$USER" = root] # true if the value of $USER is "root"

["$USER" != root] # true if the value of $USER is not "root"

[-z "$USER"] # true if the string "$USER" has zero length

[string1 \< string2] # true if string1 sorts less than string2

[string1 \> string2] # true if string1 sorts greater than string2

• Note that we need to quote the ‘>’ and the ‘<’ to avoid interpreting them as file redi-

rection.

• Note: the spaces after the “[“ and before the “]” are essential.

• Also spaces are essential around operators

Conditions—Integer Comparisons

• Examples of numeric integer comparisons:

["$x" -eq 5] # true if the value of $x is 5

["$x" -ne 5] # true if integer $x is not 5

["$x" -lt 5] # true if integer $x is < 5

["$x" -gt 5] # true if integer $x is > 5

["$x" -le 5] # true if integer $x is ≤ 5

["$x" -ge 5] # true if integer $x is ≥ 5

• Note again that the spaces after the “[“ and before the “]” are essential.

• Also spaces are essential around operators

14.1 Conditions 1.109.2 14

Conditions—File Tests, NOT Operator

• The shell provides many tests of information about files.

• Do man test to see the complete list.

• Some examples:

$ [-f file] # true if file is an ordinary file

$ [! -f file] # true if file is NOT an ordinary file

$ [-d file] # true if file is a directory

$ [-u file] # true if file has SUID permission

$ [-g file] # true if file has SGID permission

$ [-x file] # true if file exists and is executable

$ [-r file] # true if file exists and is readable

$ [-w file] # true if file exists and is writeable

$ [file1 -nt file2] # true if file1 is newer than file2

• Note again: the spaces after the “[“ and before the “]” are essential.

• Also spaces are essential around operators

Conditions—Combining Comparisons

• Examples of combining comparisons with AND: -a and OR: -o, and grouping with

\(...\)

true if the value of $x is 5 AND $USER is not equal to root:

["$x" -eq 5 -a "$USER" != root]

true if the value of $x is 5 OR $USER is not equal to root:

["$x" -eq 5 -o "$USER" != root]

true if (the value of $x is 5 OR $USER is not equal to root) AND

($y > 7 OR $HOME has the value happy)

[\("$x" -eq 5 -o "$USER" != root \) -a \

\("$y" -gt 7 -o "$HOME" = happy \)]

• Note again that the spaces after the “[“ and before the “]” are essential.

• Do man test to see the information about all the operators.

15. Arithmetic 1.109.2 15

15 Arithmetic

Arithmetic Assignments

• Can do with the external program expr

– . . . but expr is not so easy to use, although it is very standard and portable: see

man expr

– Easier is to use the built in let command

∗ see help let

– Examples:

$ let x=1+4

$ let ++x # Now x is 6

$ let x=’1 + 4’

$ let ’x = 1 + 4’

$ let x="(2 + 3) * 5" # now x is 25

$ let "x = 2 + 3 * 5" # now x is 17

$ let "x += 5" # now x is 22

$ let "x = x + 5" # now x is 27; NOTE NO $

– Notice that you do not need to quote the special characters with let.

– Quote if you want to use white space.

– Do not put a dollar in front of variable, even on right side of assignment; see last

example.

16 Input & Output

16.1 Output with echo

Output with echo

• To perform output, use echo, or for more formatting, printf.

• Use echo -n to print no newline at end.

• Just echo by itself prints a newline

16.2 Input with read

Input: the read Command

• For input, use the built-in shell command read

17. Finding examples of shell scripts on

your computer

1.109.2 16

• read reads standard input and puts the result into one or more variables

• If use one variable, variable holds the whole line

• Syntax:

read 〈var1〉...

• Often used with a while loop like this:

while read var1 var2

do

do something with $var1 and $var2

done

• Loop terminates when reach end of file

• To prompt and read a value from a user, you could do:

while [-z "$value"]; do

echo -n "Enter a value: "

read value

done

Now do something with $value

17 Finding examples of shell scripts on your computer

Your Linux system has a large number of shell scripts that you can refer to as examples. I
counted about 1400. Here is one way of listing their file names:

$ file /bin/* /usr/bin/* /usr/sbin/* /sbin/* /etc/rc.d/* /usr/X11R6/bin/* \

| grep -i "shell script" | awk -F: ’{print $1}’

Let’s see how this works. I suggest executing the commands separately to see what they
do:

$ file /bin/* /usr/bin/*
$ file /bin/* /usr/bin/* | grep -i "shell script"

$ file /bin/* /usr/bin/* | grep -i "shell script" | awk -F: ’{print $1}’

The awk program is actually a complete programming language. It is mainly useful for

selecting columns of data from text.

awk automatically loops through the input, and divides the input lines into fields. It calls

these fields $1, $2,. . .$NF. $0 contains the whole line. Here the option -F: sets the field

separator to the colon character. Normally it is any white space. So printing $1 here prints

what comes before the colon, which is the file name.
Suppose you want to look for all shell scripts containing a particular command or state-

ment? Looking for example shell scripts that use the mktemp command:

$ file /bin/* /usr/bin/* /usr/sbin/* /sbin/* /etc/rc.d/* /usr/X11R6/bin/* \

| grep -i ’shell script’| awk -F: ’{print $1}’ | xargs grep mktemp

18. Alerting about problems by email 1.109.2 17

18 Alerting about problems by email

Alerting about problems by email

#! /bin/sh

A quick script whipped up by Nick to send mail if

root file system is more than 90 per cent full.

percentful=$(df / | awk ’NR > 1{sub("%", "", $5);print $5}’)

if ["$percentful" -gt 90]

then

message="root file system is $percentful% full"

echo "$message" | mail -s $message root

fi

How does that work?

• $ df / ←↩ prints how full the hard disk is full.

– The fifth column is the percentage full.

– The first row is a row of headings:

\cmd{df /}

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/md0 28840124 23822440 3552692 88% /

• We pipe this through awk which

– chooses lines greater than 1: NR > 1

– substituted “%” with nothing: sub("%", "", $5)

– prints the remaining number.

• The number is assigned to the variable percentful

• we use the test program in its “[...]” guise, as the condition for the if state-

ment to check whether this is greater than 90%

• If so, we email the message in the body, and also in the subject, to the root mail user,

which of course, has been assigned by a mail alias to another user (see Topic 1.114.1

Perform security administration tasks)

• You could run that script from cron.

19. License Of This Document 1.109.2 18

19 License Of This Document

License Of This Document

Copyright c© 2005 Nick Urbanik <nicku@nicku.org>

You can redistribute modified or unmodified copies of this document provided that this copy-

right notice and this permission notice are preserved on all copies under the terms of the GNU

General Public License as published by the Free Software Foundation — either version 2 of

the License or (at your option) any later version.

