
LPIC 102

Compiling a kernel

1 Aim

We aim to be able to compile a Linux kernel.

2 Background

In this laboratory the old DEC network cards use a driver that is included in the kernel
source code, but it is not built in the default setup that we use in this laboratory. We
need this built as a module that can be loaded into the kernel so that we can use the
network card.

There are a number of steps in the process:

• We verify that the kernel source code is installed.

• I prefer to build the kernel not as root, but as a normal user. We will change the
ownership of the kernel source code to our own account.

• We edit the Makefile and change the EXTRAVERSION name near the top so that the
kernel will have a different name from the kernel provided by the distribution.

• We copy a suitable configuration file from those provided by the distribution, or
we can go through and choose the details of configuration ourselves, though this is
quite time consuming, as there are many configuration options to choose. The name
of the configuration file is .config

• We start a configuration program that provides a graphical user interface that edits
the configuration file with make xconfig

• We calculate the dependencies (which things need to be compiled) with make dep.

• We build the kernel with make bzImage

• We build the modules with make modules

• We install the modules with sudo make modules install

• We copy the kernel to the /boot directory

• We also copy the System.map file and the .config files to the /boot directory.

• Generate a ram disk file with mkinitrd.

• We edit the GRUB configuration so we can boot our new kernel.

• We boot into our new kernel and watch with a happy smile as everything works.

Nick Urbanik 〈nicku(at)nicku.org〉 ver. 1.0

<nicku(at)nicku.org>


Compiling a kernel
LPIC 102 2

3 Procedure

3.1 Change the Ownership of the Source Code

1. Notice the dot ‘.’ at the end of the chown command. Use your own username instead
of jimmy.

$ cd /usr/src ←↩
$ ls ←↩
debug linux-2.4 linux-2.4.21-15.EL redhat

$ cd linux-2.4.21-15.EL ←↩
$ chown -R jimmy.jimmy . ←↩

We will call the current location the top level of the source directory.

2. Let us clean up any other residue from previous compiles with

$ make clean ←↩

3.2 Change the Name of the Kernel: Edit the Makefile

1. With the editor of your choice (emacs, gedit, vi, nano. . . , edit the file Makefile

in the top level directory, and

2. change the line

EXTRAVERSION = -15.EL

to

EXTRAVERSION = -15.ELde4x5

3.3 Get a Configuration File

1. Red Hat provide some configuration files in the config directory. Get an appropriate
configuration for the computer and. . .

$ cd configs ←↩
$ ls ←↩
kernel-2.4.21-athlon.config kernel-2.4.21-ia32e.config

kernel-2.4.21-athlon-smp.config kernel-2.4.21-ia64.config

kernel-2.4.21-i386-BOOT.config kernel-2.4.21-ppc64.config

kernel-2.4.21-i386.config kernel-2.4.21-ppc64iseries.config

kernel-2.4.21-i586.config kernel-2.4.21-ppc64pseries.config

kernel-2.4.21-i586-smp.config kernel-2.4.21-s390.config

kernel-2.4.21-i686.config kernel-2.4.21-s390x.config

kernel-2.4.21-i686-hugemem.config kernel-2.4.21-x86_64.config

kernel-2.4.21-i686-smp.config kernel-2.4.21-x86_64-smp.config

$ cp kernel-2.4.21-i686.config ../.config ←↩

. . . copy it to the name .config in the top level.

2. Have a look at the configuration file with less or your editor.

Nick Urbanik 〈nicku(at)nicku.org〉 ver. 1.0

<nicku(at)nicku.org>


Compiling a kernel
LPIC 102 3

3.4 Edit the Configuration with make xconfig

1. In the top level directory, type:

$ make xconfig ←↩

This will start a Tk program that allows you to select configuration options.

2. Choose the menu item Network Interfaces

3. Find the item that corresponds the the de4x5 module, and select m for module You
can click on the help buttons to find what each configuration option is for.

4. Save the configuration and exit the program.

3.5 Make the Dependencies

$ make dep ←↩

3.6 Build the Kernel

$ make bzImage ←↩

3.7 Build the Modules

$ make modules ←↩

3.8 Install the Modules

$ sudo make modules install ←↩

3.9 Copy the kernel to /boot

$ sudo cp -a arch/i386/boot/bzImage /boot/vmlinuz-2.4.21-15.ELde4x5 ←↩
$ sudo cp -a System.Map /boot/System.map-2.4.21-15.ELde4x5 ←↩
$ sudo cp -a .config /boot/config-2.4.21-15.ELde4x5 ←↩

3.10 Make an RAM disk file with mkinitrd

$ cd /boot ←↩
$ /sbin/mkinitrd -v initrd-2.4.21-15.ELde4x5.img 2.4.21-15.ELde4x5 ←↩

3.11 Edit GRUB Configuration to Boot the New Kernel

1. Edit /boot/grub/grub.conf (or /boot/grub/menu.lst) and copy the section for
booting the old kernel

2. Edit it, changing the name of the kernel and initrd file to match what you have
made

3. Boot the computer into your new kernel and rejoice!

Nick Urbanik 〈nicku(at)nicku.org〉 ver. 1.0

<nicku(at)nicku.org>

	Aim
	Background
	Procedure
	Change the Ownership of the Source Code
	Change the Name of the Kernel: Edit the Makefile
	Get a Configuration File
	Edit the Configuration with make xconfig
	Make the Dependencies
	Build the Kernel
	Build the Modules
	Install the Modules
	Copy the kernel to /boot
	Make an RAM disk file with mkinitrd
	Edit GRUB Configuration to Boot the New Kernel


