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1 Aim

After successfully working through this exercise, You will:

• write simple shell scripts using for, if, while statements;

• understand basic regular expressions, and be able to create your own regular ex-
pressions;

• understand how to execute and debug these scripts;

• understand some simple shell scripts written by others, and

• be ready to begin to perform automated editing of configuration files using sed

• be ready to begin customizing an installation using an automated installation method
called kickstart, which will be our next laboratory topic.

2 Background

A working knowledge of shell scripting is essential to everyone wishing to become reason-
ably adept at system administration, even if they do not anticipate ever having to actually
write a script. Consider that as a Linux machine boots up, it executes the shell scripts
in /etc/rc.d to restore the system configuration and set up services. A detailed under-
standing of these startup scripts is important for analyzing the behaviour of a system,
and possibly modifying it.

Writing shell scripts is not hard to learn, since the scripts can be built in bite-sized
sections and there is only a fairly small set of shell-specific operators and options to learn.
The syntax is simple and straightforward, similar to that of invoking and chaining together
utilities at the command line, and there are only a few “rules” to learn. Most short scripts
work right the first time, and debugging even the longer ones is straightforward.

A shell script is a “quick and dirty” method of prototyping a complex application.
Getting even a limited subset of the functionality to work in a shell script, even if slowly, is
often a useful first stage in project development. This way, the structure of the application
can be tested and played with, and the major pitfalls found before proceeding to the final
coding in C, C++, Java, or Perl.

Shell scripting hearkens back to the classical UNIX philosophy of breaking complex
projects into simpler subtasks, of chaining together components and utilities.

2.1 Where to get more information

There is a free on-line book about shell programming at: http://www.linuxdoc.org/

LDP/abs/html/index.html and http://www.linuxdoc.org/LDP/abs/abs-guide.pdf.
The handy reference to shell programming is:

$ pinfo bash
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or

$ man bash

3 The Shebang

A shell script is started by the Linux kernel. The kernel reads the first two bytes of the
executable file to determine how to execute it. If it starts with the characters “#!” then
the kernel will consider this to be executed as a script, run by an interpreter. The kernel
then reads the next characters after the “#!” to determine what interpreter to use.

For shell scripts, the interpreter is /bin/sh, so the first line of all our shell scripts is:

#! /bin/sh

If you make any typing mistake in the name of the interpreter, you will get an error
message such as “bad interpreter: No such file or directory.”

4 Making the script executable

To easily execute a script, it should:

• be on the PATH

• have execute permission.

How to do each of these?

• Red Hat Linux by default, includes the directory ∼/bin on the PATH, so create this
directory, and put your scripts there.

• If your script is called script, then this command will make it executable:

$ chmod +x script

5 True and False

Shell programming uses external programs very much. When program execution is suc-
cessful, programs have an exit status of 0, and a non-zero error code when not successful.
As a result, shell programming uses the value 0 as true, and non-zero as false.

6 Shell Variables

When using the value of a variable, the variable starts with a dollar sign ‘$’ When assigning
a value to a variable, the variable has no dollar sign. An assignment has no spaces either
side of the ‘=’:

a=375

hello=$a

PATH="$PATH:/sbin:/usr/sbin"
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6.1 Baby Can’t Change Parent

Nonsense, any parent will tell me. Okay, I’m talking about processes, not humans. When
a parent process fork()s and has a child process, the child process inherits all the envi-
ronment variables of the parent. But the child process cannot change any environment
variable of the parent.

If you write a shell script that sets some environment variables and then exits, you will
find that all these new values have disappeared. This applies to subshells too, so values
set in a subshell are “local”. To execute some commands in a subshell, put parentheses
around them. See the example in section 7. Here is an example of what I am talking
about:

$ echo $HOME

/home/nicku

$ pwd

$ cat baby

#! /bin/sh

cd /usr

HOME="Tsing Yi"

echo $HOME

pwd

$ ./baby

Tsing Yi

/usr

$ echo $HOME

/home/nicku

$ pwd

/home/nicku/teaching/ict/ossi/lab/shell

7 Special Variables

Parameters may be passed to a shell script. ‘$0’ is the name of the shell script itself. The
first parameter is called ‘$1’, the second is ‘$2’ and so on. The number of parameters
is ‘$#’. A list of all the parameters is in the variables ‘$*’ and ‘$@’. The only difference
between ‘$*’ and ‘$@’ is when they are enclosed in double quotes—see section 9.1 on
page 6 on quoting.

IFS is the “internal-field separator”. The shell automatically splits strings into fields
divided by the IFS. Here is a simple example:

$ (IFS=:; echo $PATH)

/usr/kerberos/bin /usr/local/bin /usr/bin /bin /usr/bin/X11 /usr/games

/usr/bin /usr/X11R6/bin /opt/OpenNMS/bin /usr/java/jdk1.3.1_01/bin

/home/nicku/bin /sbin /usr/sbin /usr/local/sbin

I changed IFS in a subshell so that the value of IFS in the current shell would not be
changed. Sort of like a local variable.

8 Special Characters

Comments start with a ‘#’. Statements are separated either by newlines, or by semicolons
‘;’.
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The dot command is useful for executing a login script:

. ~/.bash_profile

It is useful here, because it does not execute the commands in a separate subshell. Hence,
all changes to variables remain.

The ‘$’ symbol indicates that a variable name comes next, and gives the value of that
variable.

The backslash "\" has many meanings, mostly similar to it’s behaviour in the C
programming language. At the end of a line, a backslash allows a long line to be split
into shorter pieces.

There are many other characters that are special to the shell. See chapter 4 of http:
//www.linuxdoc.org/LDP/abs/html/index.html.

9 Quoting

There are four main ways of quoting: forward single quotes, double quotes, the backslash,
and backward single quotes. Quoting causes the quoted material to have a different
meaning from normal. In particular, the special treatment the shell gives to special
characters is suppressed to some degree.

Enclosing in double quotes "..." suppresses all special behaviour, except for variable
interpretation ($), the forward quote, and the backslash.

Enclosing in single forward quotes ’...’ suppresses the special behaviour of all special
characters.

Putting a backslash in front of a character preserves the literal value of the character,
except for newline.

Single back quotes ‘...‘ mean: “execute the external program called within these
quotes and put the output back here.” This is called command substitution in the bash
manual. Command expansion is really quite different from the other three quoting meth-
ods. Here is an example using the hostname command, which prints the hostname on
standard output:

$ hostname

nickpc.tyict.vtc.edu.hk

$ h=hostname

$ echo $h

hostname

$ h=‘hostname‘

$ echo $h

nickpc.tyict.vtc.edu.hk

9.1 When to use quoting

Many programs, such as grep or find need some special characters that they themselves
will interpret. We need to be able to send these characters unchanged to the program. In
this case, quote them. Examples:

$ find . -name "*.rpm"

If we do not quote the asterisk, the shell will expand *.rpm to match only the rpm files in
the current directory, but we want find to locate all the .rpm files in the directories below
the current directory also.
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If you want a variable value that contains spaces to not be automatically split my the
shell, then quote it. Here, testquote is a short shell script that prints information about
its parameters:

$ test="one two"

$ testquote $test

You have 2 parameters. They are:

parameter 1: one

parameter 2: two

$ testquote "$test"

You have 1 parameters. They are:

parameter 1: one two

Note that "$*" is one value (not split up), while "$@" is split into the original param-
eters. So if ‘$#’ had the value 4, then there are four separately quoted values in "$@".
See the beginning of section 7 on page 4.

Here is a little example showing the difference between "$@" and "$*":

$ cat test_at_star

#! /bin/sh

testquote "$@"

testquote "$*"

$ test_at_star one two three

You have 3 parameters. They are:

parameter 1: one

parameter 2: two

parameter 3: three

You have 1 parameters. They are:

parameter 1: one two three

Notice how "$*" just turned into one long parameter that contains spaces.

9.2 Printing Output

We use echo to print things. By default, it puts a new line at the end. To avoid printing
a newline, use echo -n:

$ cat echo-n

#! /bin/sh

echo "Hello "

echo World

echo -n "Hello "

echo World

$ ./echo-n

Hello

World

Hello World

9.3 Reading Input

There are many ways of reading input, but one simple way is to use read;
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$ read answer

yes

$ echo $answer

yes

10 The Basic Statements

The shell is a complete programming language, and supports for loops, while loops, if
statements, case statements (like switch in C), as well as function calls. We look at only
a small subset of these.

10.1 The if statement

The syntax of the if statement is:

if test-commands

then

statements

fi

We can add an else:

if test-commands

then

statements-if-true

else

statements-if-false

fi

and we can have other if conditions nested inside, but they are introduced with a new
keyword: elif:

if test-commands

then

statements-if-test-commands-1-true

elif test-commands-2

then

statements-if-test-commands-2-true

else

statements-if-all-test-commands-false

fi

The test-commands is either:

• a program being executed, or

• a test made using the program test; see man test for all the tests you can make
using test. Also see section 10.5 on page 9.

A simple example:
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if grep nick /etc/passwd > /dev/null 2>&1

then

echo Nick has a local account here

else

echo Nick has no local account here

fi

We redirect all output from grep to avoid the side effect of printing the line grep found.
If you want to put the then on the same line as the if, you need to put a semicolon

before the then. Here is another example that adds the user nicku to the sudoers file if
that user is not there already:

if ! grep nicku /etc/sudoers > /dev/null 2>&1; then

echo "nicku ALL=(ALL) ALL" >> /etc/sudoers

fi

10.2 The while statement

The format of the while statement is:

while test-commands

do

loop-body-statements

done

Again, if you want to put the do on the same line as the while, then you need an
extra semicolon before the do. A simple example:

i=0

while [ "$i" -lt 10 ]; do

echo -n "$i " # -n suppresses newline.

i=‘expr $i + 1‘ # i=$(($i+1)) also works.

done

The square brackets are an example of the test program. See section 10.5 on the next
page.

10.2.1 expr

In the last example using a while loop, we used the program expr to do arithmetic. This
is the portable way to do arithmetic in shell programming. Note that since expr prints its
output on standard output, we use command substitution to assign the program output
to the variable i. See the manual page for expr for more information.

10.3 The for statement

The format of the for statement is:

for name in words

do

loop-body-statements

done

Here is a simple example:
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for planet in Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto

do

echo $planet

done

You can leave the in words out; in that case, name is set to each parameter in turn.
Here is another example:

for i in *.txt

do

echo $i

grep ’lost treasure’ $i

done

Note that the shell will expand the wildcard characters into a list of file names that you
can process one by one in the loop.

10.4 break and continue

Inside loops you can the break and continue statements. They work like they do in C.

10.5 The test program

The test program is used to perform comparisons of strings, numbers and files, often
used with the if and while statements. I will not waste space by copying the manual
page here: do man test to read all about test.

You can call the test program two ways: one as the name test, the other (more
common way) as [ ... ]. If we look, there is a program called “[”:

$ which [

/usr/bin/[

$ ls -l /usr/bin/[

lrwxrwxrwx 1 root root 4 Nov 25 13:36 /usr/bin/[ -> test

Important Note: there must be white space before and after the “[”:

i=0

while ["$i" -lt 10]; do

echo -n "$i "

i=‘expr $i + 1‘

done

bash: [0: command not found

10.6 Using the “&&” and “||” Operators for Flow Control

The shell has many operators; see the manual for a complete list. But here we look at
two familiar operators that are surprisingly useful, and yet which may have a use that is
unfamiliar to you.

They are used for logical operations, and are shortcut logical operators, just as you are
familiar with in the C and Java programming languages. However, in shell programming,
they are used for flow control, rather like an if statement.
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Suppose we have a shell script that we must call with two parameters, and that it
should fail if there are fewer or more parameters. We can use the ‘&&’ operator after a
test and exit. Here is a little shell script that will only accept two parameters and will
exit with a help message otherwise:

#! /bin/sh

[ $# -ne 2 ] && echo $0 parameter1 parameter2 && exit

echo parameter1 is $1, and parameter2 is $2.

So let’s run it, first with no parameters, then with two:

$ ./two-parameters

./two-parameters parameter1 parameter2

$ ./two-parameters p q

parameter1 is p, and parameter2 is q.

The syntax is like this:

command1 && command2

command2 will execute only if command1 is successful.
Similarly, the syntax for the ‘||’ operator is:

command1 || command2

command2 will execute only if command1 is not successful.

11 Regular Expressions

Much of what a system administrator does is editing configuration files. There are tools
to help with this; one such tool is the program sed; another is the programming lan-
guage Perl. The one thing that comes in useful in both cases are regular expressions.
The grep command also uses regular expressions. Regular expressions provide a way of
matching patterns in a text file; they can also provide a way of altering the text that
matches the pattern. Getting started with regular expressions is our aim today.

A regular expression is a string of characters. Some of these characters have a special
meaning; most do not. The characters with a special meaning are called metacharacters.
Here are some example regular expressions without metacharacters:

/nicku/ # simply matches the string "nicku"

/hacker/ # simply matches the string "hacker"

11.1 Some Funny Characters (metacharacters)

Asterisk: * matches zero or more of the thing that came just before. Example:

1133* matches 11 followed by one or more 3’s, so it will match: 113 or 1133 or
11333 or 1133333333333333. . .

Dot: . matches any single character, except newline. So ".*" matches zero or more of
any character.

Nick Urbanik <nicku(at)nicku.org> ver. 1.10

<nicku(at)nicku.org>


Shell Programming—an Introduction
Operating Systems and Systems Integration 11

Caret: ˆ matches beginning of a line, or inside backets means something different (see
below).

Dollar sign: $ matches the end of a line. For example, “ˆ$” matches blank lines.

Brackets: [...] matches one character from the set in the brackets. Examples:

"[xyz]" matches the characters x, y, or z.

"[c-n]" matches any of the characters in the range c to n.

"[B-Pk-y]" matches any of the characters in the ranges B to P and k to y.

"[a-z0-9]" matches any lowercase letter or any digit.

"[^b-d]" matches all characters except those in the range b to d.

Combined sequences of bracketed characters match common word patterns. "[Yy][Ee][Ss]"
matches yes, Yes, YES, yEs,. . .

"[0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]" matches any ive student
number.

Backslash: \ quotes a metacharacter to take away its special meaning. You can match
a literal "$" with "\$", or a backslash with "\\".

Ampersand: & means, in a replacement string, the string to be replaced. See below.

11.2 Sed

The sed program (stream editor) is a non-interactive editing program. We will look only
at a subset of its behaviour today: substitutions.

Let’s start with an example:

sed ’/nicku/s//nickl/’ /tmp/sudoers-orig > /tmp/sudoers

On each line of the input file /tmp/sudoers-orig, sed will replace the first instance of
nicku with nickl and send the result to the output.

Let’s pull that expression /nicku/s//nickl/ apart to see how it works:
It begins with an address, which is a simple regular expression without any metachar-

acters:

/nicku/

This sed address matches all line on the input file that contain the string nicku. It will
apply the substitute operation to them.

The next part is a substitution expression:

s//nickl/

The syntax of a sustitution expression is:

s/pattern to replace /replacement /

Here, the pattern to replace is empty: that means that we use the value from the
address pattern, so we are replacing the string nicku with the replacement, nickl.

So if the input file /tmp/sudoers-orig contains this line:

nicku ALL=(ALL) ALL
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then the output file will contain:

nickl ALL=(ALL) ALL

instead.
Here is another example:

sed ’/^\/misc/s//#&/’ /tmp/auto.master-orig > /tmp/auto.master

What does this do? It takes as input the file /tmp/auto.master-orig, then finds a line
starting with /misc, and puts a comment character before it. The edited output file is
/tmp/auto.master.

Again, let us examine this expression ’/^\/misc/s//#&/’ part-by-part:
It begins with an address, which (in this case) is a regular expression:

/^\/misc/

This means: apply the command to lines that start with (the "^" metacharacter) /misc.
We have to use a backslash to quote the forward slash, because otherwise the forward
slash would mark the end of the regular expression, rather than a literal forward slash.

The rest is a substitution expression:

s//#&/

Again the pattern to replace is empty: that means that we use the value from the address
pattern, so we are replacing the string /misc with the replacement.

The hash symbol "#" in the replacement expression is a literal hash, i.e., the comment
character that we are inserting.

The special metacharacter "&" has the value of the entire pattern to replace. So we
are replacing a line on the input file like this:

/misc /etc/auto.misc --timeout 60

with this in the output:q

#/misc /etc/auto.misc --timeout 60

11.3 Where can I find out more about sed?

The book http://www.linuxdoc.org/LDP/abs/html/index.html has an appendix about
sed. It has a rather limited manual page, but there is an faq at http://www.ptug.org/
sed/sedfaq.htm.

12 Finding examples of shell scripts on your com-

puter

Your Linux system has a large number of shell scripts that you can refer to as examples.
I counted about 1400. Here is one way of listing their file names:

$ file /bin/* /usr/bin/* /usr/sbin/* /sbin/* /etc/rc.d/* /usr/X11R6/bin/* \

| grep -i "shell script" | awk -F: ’{print $1}’

Let’s see how this works. I suggest executing the commands separately to see what they
do:
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$ file /bin/* /usr/bin/*

$ file /bin/* /usr/bin/* | grep -i "shell script"

$ file /bin/* /usr/bin/* | grep -i "shell script" | awk -F: ’{print $1}’

The awk program is actually a complete programming language. It is mainly useful for
selecting columns of data from text.

awk automatically loops through the input, and divides the input lines into fields. It
calls these fields $1, $2,. . . $NF. $0 contains the whole line. Here the option -F: sets the
field separator to the colon character. Normally it is any white space. So printing $1 here
prints what comes before the colon, which is the file name.

Suppose you want to look for all shell scripts containing a particular command or
statement? Looking for example shell scripts that use the mktemp command:

$ file /bin/* /usr/bin/* /usr/sbin/* /sbin/* /etc/rc.d/* /usr/X11R6/bin/* \

| grep -i ’shell script’| awk -F: ’{print $1}’ | xargs grep mktemp

Here is a useful little shell script that does this:

#! /bin/sh

if [ $# -eq 0 ]

then

cmd=‘basename $0‘

echo $cmd: search all Bourne shell scripts for a command

echo usage: $cmd [grep-options] command-to-grep-for

echo the grep-option -l is useful

exit 1

fi

(

IFS=:

for d in $PATH

do

file $d/*

done

find /etc/rc.d -type f | xargs file

) \

| grep ’Bourne.* shell script’ \

| awk -F: ’{print $1}’ \

| xargs grep "$@"

We run the for loop in a sub shell to make the change to IFS local. IFS is the “internal
field separator”. The shell will automatically split lines into fields separated by the IFS.

12.1 Where can I find out more about awk?

There is a whole book about awk; you can buy it from O’Reilly for about $300 HK, or
you can read it online at http://www.ssc.com/ssc/eap/.

13 Debugging Shell Scripts

It is best to write shell scripts incrementally: write part, test that it works, and continue
until your script does what is required.
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You can use echo statements to print the values of variables.
You can run the script with the verbose option to bash. For a script called script,

you could run it in verbose mode like this:

$ sh -v script

You can see each command after it has been expanded by using the -x option:

$ sh -x script

14 Common Mistakes

I see many people making the same mistakes. This is due partly to the difference in the
shell from other programming languages, and partly due to missing lectures or being late
in the laboratory! :-)

Spaces are important! The shell cares about spaces much more than other program-
ming languages. This is because it does so many different things; if you put

i;

in a C program, it is just an expression that is evaluated, the result is thrown away,
and nothing happens. The shell, on the other hand, will look for an program by the
name i, and execute it.

The shell breaks things up into separate tokens at white space. Where you put
spaces does matter.

Don’t put spaces in assignments: An assignment is a single thing. If you put
spaces in it, the shell will try to execute a program by the name of the variable
you are trying to assign to!

i =20

bash: i: command not found

eval needs spaces: You need to put spaces between the operands of the external
program eval:

i=0

i=‘eval i+1‘

bash: i+1: command not found

Put spaces around the [ ... ] See the notes in the section 10.5 on page 9.

Use meaningful variable names: I saw people get confused about variables such as
$1, $2. Assign them to meaningful names, and you won’t get so confused. Use
what your other lecturers taught you about good programming practice!
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15 Questions

Make all these scripts executable programs on your PATH.

1. Write a simple shell script that takes any number of arguments on the command
line, and prints the arguments with “Hello ” in front. For example, if the name of
the script is hello, then you should be able to run it like this:

$ hello Nick Urbanik

Hello Nick Urbanik

$ hello Edmund

Hello Edmund

2. Write a simple shell script that takes two numbers as parameters and uses a while

loop to print all the numbers from the first to the second inclusive, each number
separated only by a space from the previous number. Example, if the script is called
jot, then

$ jot 2 8

2 3 4 5 6 7 8

3. Suppose that the script you wrote for the previous question is called jot. Then run
it calling sh yourself. Notice the difference:

sh jot 2 5

sh -v jot 2 5

sh -x jot 2 5

Do you notice any difference in the output from last two?

4. Write a shell script that, for each .rpm file in the current directory, prints the name
of the package on a line by itself, then runs rpm -K on the package, then prints a
blank line, using a for loop.

Mount the server ictlab.tyict.vtc.edu.hk:/var/ftp/pub on a convenient direc-
tory on your machine, such as /mnt/ftp. Test your script on the files in /mnt/ftp

/rh-7.2-updated/RedHat/RPMS.

The option rpm -K checks that the software package is not corrupted, and is
signed by the author (if you have imported the author’s public key in your gpg
setup)

5. Modify the script you wrote for the previous question to print the output of rpm -K

only for all the files that fail the test. In particular, if the package’s gpg signature
fails, then your script should display the output of rpm -K. There are at least two
packages in this directory which do not have a valid gpg signature; one of them is
redhat-release-7.2-1.noarch.rpm; what is the other?

Here is output from rpm -K for two packages, one with no gpg signature, the other
with:

$ rpm -K redhat-release-7.2-1.noarch.rpm bash-2.05-8.i386.rpm

redhat-release-7.2-1.noarch.rpm: md5 OK

bash-2.05-8.i386.rpm: md5 gpg OK
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Test it in the same network directory as for the previous question.

6. Write a shell script to add a local group called administrator if it does not already
exist. Do not execute any external program if the administrator group already
exists.

7. Download a copy of the bogus student registration data from http://ictlab.

tyict.vtc.edu.hk/snm/lab/regular-expressions/artificial-student-data.

txt. Use this for the following exercises, together with the grep program:

(a) Search for all students with the name “CHAN”

(b) Search for all students whose student number begins and ends with 9, and with
any other digits in between.

(c) Search for all student records where the Hong Kong ID has a letter, not a
number, in the parentheses.

(d) If you have time, you may do the same exercises, but display only the students’
names, or student number.

8. Write a shell script to take a file name on its command line, and edit it with sed so
that every instance of “/usr/local/bin” is changed to “/usr/bin”

9. Write a shell script to take a file name on its command line, and edit it using sed

so that every line that begins with the string server:

server other text

is edited so that averything after “server ” (i.e., the “other text ”) is replaced
with the string “clock.tyict.vtc.edu.hk”, so that the line above looks like this:

server clock.tyict.vtc.edu.hk

Test this on a copy of the file /etc/ntp.conf that is on your computer. (Install the
package ntp if it is not there).
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