Shell Programming—an Introduction

Copyright Conditions: Open Publication License (see
http:// www.opencontent.org/ openpub/)

Nick Urbanik
nicku@vtc.edu.hk

Department of Information and Communications Technology

http://www.opencontent.org/openpub/

After successfully working through this exercise, You will:
1 H 1 I : g Why Shell Scripting?
B write simple shell scripts using for, if, while, case, getopts e g o
. The Shell is an Interpreter
statements; The Sl an et
Making Executable

B write shell script functions, and be able to handle parameters;

Quoting and Funny Chars

B understand basic regular expressions, and be able to create your

Variables
own regular expressions; Gommand Subsitution
B understand how to execute and debug these scripts; Sondions
. - 7 Arithmetic
B understand some simple shell scripts written by others.
Statements
Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

Why Shell Scripting?

m Basic startup, shutdown of Linux, Unix systems uses large intro

Aim
number of shell scripts
+ understanding shell scripting important to understand The Shellanrierprtr
and perhaps modify behaviour of system Making Excctable
L Very hlgh IeVEI pOWerfUI Scnpt can be Very Short Quoting and Funny Chars

Variables

m Can build, test script incrementally
m Useful on the command line: “one liners”

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

Where to get more information

m the Libarary has two copies of the book, Learning the Bash e

im

Shell, second edition, by Cameron Newham & Bill SR
Rosenblatt, O'Reilly, 1998. e o e
® There is a free on-line book about shell programming at: Vaking Brecuizbe
http://tldp.org/LDP/abs/html/index.html and Heoting ane oy Chas
http://tldp.org/LDP/abs/abs—guide.pdf. It has Variables
hundreds of pages, and is packed with examples. o oS o]

Conditions

® The handy reference to shell programming is:
$ pinfo bash
or
$ man bash

s IMPORTANT: vash provides simple on-line help for B

. . Temporary Files, Signals
all built-in commands, e.g.,
S help let

Arithmetic

Statements

Input & Output

Functions

Debugging

Regular Expressions

awk and sed

find

http://tldp.org/LDP/abs/html/index.html
http://tldp.org/LDP/abs/abs-guide.pdf

The Shell is an Interpreter

B Some languages are compiled: C, C++, Java,. .. nfr

Aim

Why Shell Scripting?

B Some languages are interpreted: Java bytecode, Shell A ——

: :
m Shell is an interpreter: kernel does not run shell program The Shebang

d | rectly; Making Executable

¢ kernel runs the shell program /bin/sh with script le
name as a parameter

+ the kernel cannot execute the shell script directly, as it

Quoting and Funny Chars

Variables

Command Substitution

can a binary executable le that results from compilinga
Arithmetic
C program
Statements
Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

The Shebang

m You ask the Linux kernel to execute the shell script e
m kernel reads rst two characters of the executable le R —
¢ If rst 2 chars are “#!” then
¢ kernel executes the name that follows, with the le name Maling Executacie
of the script as a parameter uoting and Funny Shave
m Example: a le called £ind. sh has this as the rst line: e
Command Substitution
#! /bin/sh
Conditions
m then kernel executes this: o
/bin/sh find.sh N
m What will happen in each case if an executable le begins -
Wlth Command-line Parameters
14 # ! /bj—n/rm Temporary Files, Signals
‘ # ! /bln/ls Functions
Debugging

Regular Expressions

awk and sed

find

Making the script executable

To easily execute a script, it should: o
" be on the BATH
B have execute permission. The Sl an et
How to do each of these?
m Red Hat Linux by default, includes the directory /binon ~ Semesmemmees

the PATH, so create this directory, and put your scripts Variables

there: STt

$ mkdir / bin Conditions

Arithmetic

m If your script is called script, then this command will
make it executable:
$ chmod +x script

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

Special Characters

B Many characters are special to the shell, and have a

particular meaning to the shell.

Character = Meaning See slide
Home directory 87
Command substitution. Better: $(...) §24
Comment
$ Variable expression 8§15
& Background Job 2.10 on pagel43
2

File name matching wildcard

Pipe

2.18 on page /51
2.9 on page 42

Intro

Quoting and Funny Chars
Special Characters
Special Chars—2

Special Chars—3
Quoting

Quoting—2
Quoting—When to use it?

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

Special Characters—continued: 2

Intro

Character =~ Meaning See slide I

Special Characters

(Start subshell 845,117,139

) End subshell §45,17, 39 oo

[Start character set le name matching 2.9 on page 42 cuoinoihentote ¥

] End character set le name matching 2.9 on page 42 S

{ Start command block 8§39 Zom:nd S

: Command separator 8§40 A::h;::

\ Quote next character §23 Statemens

' Strong quote §23 Input & Output

! Weak quote §23 Command-iine Parameters
Temporary Files, Signals
Functions
Debugging

Regular Expressions

awk and sed

find

Special Characters—continued: 3

Intro

Character =~ Meaning See slide
Quoting and Funny Chars

Special Characters

Input redirect 2.7 on page 40 Special Chars—2

Output redirect 2.6 on page 39 Quoting

Quoting—2
Quoting—When to use it?

Pathname directory separator

Variables

N T VA

Single-character match in lenames 2.18 on page/51
! Pipline logical NOT §28

Command Substitution

Conditions
hspace ortabi shell normally splits at white space 844 T
Statements

B Note that references to pages in the tables above refer to the modules in
the workshop notes input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

Quoting

B Sometimes you want to use a special character literally; niro
l.e., without its special meaning. Guoting and Funmy Chars
Spec!al Characters
m Called quoting Pl
o o Quotin
B Suppose you want to printthe string: 2 * 3 > 5 is a T

Quoting—When to use it?

valid inequality?

m |f you did this:
$ echo 2 * 3 > 5 is a valid inequality

Variables

Command Substitution

Conditions
the new le '5'is created, containing the character 2', then
the names of all the les in the current directory, then the N
string “3 is a valid inequality’. ot 8 Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

Quoting—2

® To make it work, you need to protect the special characters

*"and >' from the shell by quoting them. There are three Cuoing and Funny Crars
methods of quoting: S Gr—2
¢ Using double quotes (“weak quotes”) ol
¢ Using single quotes (“strong quotes”) _Quoﬁng_wmnwusen?
¢ Using a backslash in front of each special character you — varaes
want to quote Command Subetiution
m This example shows all three: Condtions
$ echo "2 * 3 > 5 is a valid inequality" Arthmeto
S echo '2 * 3 > 5 is a valid inequality’ Statemens
S echo 2 * 3 \> 5 is a valid inequality

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

Quoting—When to use it?

m Use guoting when you want to pass special characters to intro
another program_ Quoting and Funny Chars
Special Characters
m Examples of programs that often use special characters: ool oo
¢ find, locate, grep, expr, sed and echo et
B Here are examples where quoting is required for the

program to work properly:
$ find . —-name *.Jjpg
locate ' /usr/bin/c*’

S Arithmeti
$ rithmetic
S

Command Substitution

Conditions

grep 'main.*(’ *.c
i=$ (expr i * 5)

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

True and False

m Shell programs depend on executing external programs ntro

m \When any external program execution is successful, the St SR G
exit status is zero, 0 b

Variables—1

® An error results in a non-zero error code Variables—Assignments

Variables—Local to Script

[| TO matCh th'S, |n She” programmlng Variables—Unsetting Them

Command-line Parameters

4 The Value O |S true Special Built-in Variables

Variables: use Braces ${...}

¢ any non-zero value is false Afer 59

More about Quoting

®m This is opposite from other programming languages Gommand Substiution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

Variables—1

m Variables not declared; they just appear when assigned to intro
m Assignment: SO G T R
¢ no dollar sign
¢ no space around equals sign
¢ examples: v bied
3 x=10 # correct ey
$ x = 10 # wrong: try to execute program called “x” e s BrRses E L

More about Quoting

B Read value of variable:
¢ put a $'in front of variable name

Command Substitution

‘ exam p I e : Conditions
] Arithmeti
S echo "The value of x is $x" rithmeic
Statements
Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

Variables—Assignments

® You can put multiple assignments on one line: intro
1=0 j =10 k=100 Quoting and Funny Chars
m You can set a variable temporarily while executing a T and Fae
p rog ram ssignments
Y e SO e o
emacsclient oo
$ EDI TOR:gedlt crontab —-e X?t:f?;as: use Braces $ (...}
$ e Cho $ED I TOR More about Quoting
emacscC 1 l ent Command Substitution
Conditions
Arithmetic
Statements
Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

Variables—Local to Script

m Variables disappear after a script nishes i
m Variables created in a sub shell disappear Soeinend ey U
¢ parent shell cannot read variables in a sub shell e ana Fae
¢ example: s —
S cat variables
#1 /bin/sh e e
echo SHOME e e
HOME=h appy More about Quoting
echo SHOME Command Substitution
$ 5 / variables Conditions
/home/nicku Arithmetic
happy Statements
S echo S$SHOME input & Output
/home/nicku Command-line Parameters
Temporary Files, Signals
Functions
Debugging

Regular Expressions

awk and sed

Variables—Unsetting Them

® You can make a variable hold the null string by assigning it intro
to nothing, but it does not disappear totally: Quoting and Funny Chrs
S VAR= Variables

True and False

$ S et I grep U= VAR 4 Variables—1

Variables—Assignments

VAR= Variables—Local to Script
Variables—Unsetting Them

B You can make it disappear totally using unset: Commanctine Parameters

Special Built-in Variables

$ unset VAR Variables: use Braces ${...}

After $9

$ S et I grep re VAR ’ More about Quoting

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

Command-line Parameters

® Command-line parameters are called s0, s1, $2, ... Intr

m Example: when call a shell script called “shell-script” E—
like this: ﬁ“::fj False
$ shell-script paraml param2 param3 paramé Vet Assignments

Variables—Local to Script
Variables—Unsetting Them

Command-line Parameters

variable value Special Built-in Variables
Variables: use Braces ${ ...}
After $9

$O Shell—scrlpt More about Quoting
Command Substitution

$ 1 p aram 1 Conditions

S 2 p ar a.m2 Arithmetic

$ 3 param3 Statements
Input & Output

$ 4 p arafl 4 Command-line Parameters

S# number of parameters to the program, e.g., 4 Temporary s, Signal
Functions

+ Note: these variables are read-only. Debugging

Regular Expressions

awk and sed

Special Built-in Variables

®m Both s@ and $* are a list of all the parameters. Intr

m The only difference between them is when they are quoted = ===
in qguotes—see manual page for bash e o Pl

m $2 is exit status of last command ggi:%g“mstm

m 35S is the process ID of the current shell parables “unseting Ther

m Example shell script:
! / bln/ sh :/l:?;zzoutouoting
echo $0 is the full name of this shell script commandsubstiuion
echo first parameter is $1 Conditions
echo first parameter is $2 Arthmetic
echo first parameter is $3 Statements
echo total number of parameters is $# Input & Output
echo process ID is $$ ST

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

Variables: use Braces ${.. .}

m It's good to put braces round a variable name when getting ntro

|tS Val u e Quoting and Funny Chars
m Then no problem to join its value with other text: T
$ t = St = 1 2 3 \\;Z:::E:gz:;ssignments
$ echo $ftestg araiosUnasting Tren
123 Sl
No good, variable $test456 is undefined: e
$ echo $te st 4 5 6 More about Quoting
Command Substitution
S echo $ftestg456 Conditions
:I_ 2 3 4 5 6 Arithmetic
Statements
Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

Braces and Parameters after $9

®m Need braces to access parameters after $9: intro
S cat par amten Quoting and Funny Chars
#i /bin/sh
scho £10 S s
echo 57100 e,
° -/paramten abcde fghij S
al Variables: use Braces $ 1 . . .}
.
m Notice that $10 Is the same as ${1}0, I.e., the rst Command Substuton
parameter “a” then the literal character zero “0” Condiions
Arithmetic
Statements
Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

More about Quoting

®m Double quotes: " .. ." stop the special behaviour of all Intr
special characters, except for: G010 ond Fury Chars
¢ variable interpretation () Yarshes
¢ backticks (') — see slide 24 I e
¢ the backslash (\) \arable—Lmating Thers
m Single quotes ’ .. .’: Sl
¢ stop the special behaviour of all special characters AT

m Backslash:
+ preserves literal behaviour of character, except for)
newline; see slides §29, §31, §35 S
¢ Putting “\” at the end of the line lets you continue along
line on more than one physical line, but the shell will
treat it as if it were all on one line.

Command Substitution

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

Command Substitution—$(...) or *.. ."

m Enclose commandin $(...) or backticks: .. ." ntro

m Means, “Execute the command in the $ (.. .) and put the SOOI EI SR
output back here.” Variatles

m Here is an example using expr:

Example of Cmd Subst

S expr 3 + 2

5 Conditions
$ i=expr 3 + 2 # error: try execute command ‘3’ B
Statements
S i=$ (expr 3 + 2) # correct
Input & Outpu
$ i=‘expr 3 + 2 # also correct put & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

Command Substitution—Example

® \We want to put the output of the command hostname into intro

a variable: Quoting and Funny Chars
S hostname Variables
nickpc.tyict.vtc.edu.hk BTl
S h=hostname
$ echo $h Conditions
hostname Arithmetic

m Oh dear, we only stored the name of the command, not the =~ Seere
output of the command! Input & Output

Command-line Parameters

B Command substitution solves the problem:
S h=$ (hostname)
$ echo $h
nickpc.tyict.vtc.edu.hk

m We put $(...) around the command. You can then
assign the output of the command.

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

Conditions—String Comparisons

m All programming languages depend on conditions for i £ Intr
statements and for while loops Quoting and Funny Ghars
® Shell programming uses a built-in command which is either ===
teSt Or [s :| Command Substitution
o - Conditions
B Examples of string comparisons:
"SUSER" = root] # true 1if the value of $SUSER 1is "root" ﬁ?ﬁgﬂﬁﬁgs
"SUSER" != root] # true 1f the value of SUSER is not "root" AND DR Conditions
-z "SUSER"] # true if the string "SUSER" has zero length Arthmetic

stringl \< string2] # true if stringl sorts less than string2 Statements

—/ —/ o/ o/

stringl \> string2] # true if stringl sorts greater than string2

®m Note that we need to quote the >' and the <' to avoid
Interpreting them as le redirection.

Input & Output

Command-line Parameters

Temporary Files, Signals

m Note: the spaces after the “[* and before the “]” are -
essentlal Debugging
B Also spaces are essential around operators e
awk and sed

find

Conditions—Integer Comparisons

B Examples of numeric integer comparisons: intr
["$x" —-eq 5] # true if the value of $x is 5 L R e
["$x" -ne 5] # true if integer $x is not 5 e
. c . Command Substitution
["Sx" -1t 5] # true if integer S$Sx is < 5
Conditions
["Sx" —-gt 5] # true if integer $x is > 5 mm;mwms
["$x" —-le 5] # true if integer $x is < 5 File Tests & NOT
AND OR Conditions
["Sx" —-ge 5] # true if integer $x is > 5 o
®m Note again that the spaces after the “[* and before the “]” Statements
are essential. ot 8 Ot
m Also spaces are essential around operators Command-ine Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

Conditions—File Tests, NOT Operator

®m The shell provides many tests of information about files. ntro
B Doman test to see the complete list. Quoting and Funny Chars

B Some examples:
$ [-f file] # true if file is an ordinary file

Variables

Command Substitution

Conditions

$ [! -f file] # true if file is NOTan ordinary file Comparing Strings

$ [-d file] # true if file is a directory FieToss &NOT

$ [—-u file] # true if file has SUID permission AND O Condions

$ [-g file 1 # true if file has SGID permission Artmete

$ [-x file] # true if file exists and is executable izl

$ [-r file] # true If file exists and is readable Input & Output

$ [-w file] # true if file exists and is writeable Command-line Parameters

$ [filel -nt file2] # true if filel is newer than file2 Temporary Files, Signals

B Note again: the spaces after the “[“ and before the “|” are Funcions
essential. Debgging

Regular Expressions

B Also spaces are essential around operators

awk and sed

find

Conditions—Combining Comparisons

m Examples of combining comparisons with AND: —a and S
OR: -o, and grouping with \ (.. .\) Quoting and Funy Chrs
true if the value of $x is 5 AND SUSER is not equal to root: Variables
["$x" —eq 5 —a "SUSER" != root] Command Substtuton
true if the value of $x is 5 OR SUSER is not equal to root: 8‘;&";2‘5;2 Strings
["$x" -eq 5 -0 "SUSER" != root] S

AND OR Conditions

Arithmetic

true if (the value of Sx is 5 OR $SUSER is not equal to root) AND
($y > 7 OR $SHOME has the value happy)

Statements

[\("$x" -eg 5 -o "SUSER" != root \) —-a \ ot & Ot
\("$y" —gt 7 -o "SHOME" = happy \)] Command-iine Parameters
B Note again that the spaces after the “[* and before the “|” Temporary Fls, Signals
are essential. Functions
B Do man test to see the information about all the Debugging
operators. Regular Expressions

awk and sed

find

Arithmetic Assighments

B Can do with the external program expr Intro

¢ .. butexpr is notso easy to use, although it is very standard and Quoting and Funny Chars
portable: see man expr Variables

¢ Easier is to use the built in 1let command Command Substitution
n see help let Conditions

¢ Examples: Arithmetio
S let x=1+4
S let ++x # Now x is 6 ;:'t"“t
s let x=1 + 4
$ Iet .X = 1 + 4' Command-line Parameters
Slet x="(2 + 3) * 5" # now x is 25 R —
Slet "x =2+ 3* 5" # now x is 17 e—
S let "x += 5" # now x 1is 22 Debugging
Slet "x =x + 5" # now x is 27; NOTE NO $ Regular Expressions

¢ Notice that you do not need to quote the special characters with let . awk and sed

¢ Quote if you want to use white space. find

¢ Do not put a dollar in front of variable, even on right side of
assignment; see last example.

Arithmetic Expressions with $ ((...))

®m The shell interprets anything inside S ((...)) asan intro
arithmetic expression Quoting and Funny Chars
® You could calculate the number of days left in the year like T
th IS . Command Substitution
S echo "There are \ conaitens
$(((365-$(date +%3)) / 7)) weeks \ I e
left till December 31" T
m No dollar sign in front of variables in these arithmetic S
expressions. Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

Arithmetic Conditions with ((...))

m A (less portable) alternative to the arithmetic conditions in Intr
slide 127 is putting the expressionin ((...)) Sty Py G
m So you can do S
(((3>2) & & (4 <:1))) Command Substitution
instead of S
[\(3 —gt 2 \) —a \(4 -1le 1\)] Avthmetc Rdgrments
m Operators that work with 1et, $((...)) and ((...)) o))
Include: Statements
Fap == W Input & Output
+ - * / S << > 8 | 717 Command-line Parameters
< > <= >= == |= Temporary Files, Signals
? . Functions
which have exactly the same effect as in the C Debugging
programming language sy s
¢ except exponentiation operator **, i.e., avk and sed

echo $((2**20)) prints the value of 229, i.e., 1048576 ...
¢ [or detalls, see
S help let

if Statement

B Syntax:

if (test-commands)
then
(statements-if-test-commands-1-true)
elif (test-commands-2)
then
(statements-if-test-commands-2-true)
else
(statements-if-all-test-commands-false)
fi
Example:
if grep nick /etc/passwd > /dev/null 2>&1
then
echo Nick has a local account here
else

echo Nick has no local account here
fi

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

if Statement

while Statement

for Statement

for Loops: Another Example
for ((; ;7))

break and continue
Blocks: {...}

Flow Control: | | &&

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

while Statement

B Syntax: e
Whl le <teSt'CommandS> Quoting and Funny Chars
do Variables
Command Substitution
(loop-body-statements)
d Conditions
one
Arithmetic
. Exam p I e . Statements
) if Statement
1= O while Statement
for Statement
while [" $ i" -1t 10] for Loops: Another Example
for ((; ;7))
dO break and continue
Blocks: {...}
echo -n "S$i " # —n suppresses newline. Pl Ghosial |1 2
let "1 =1 4+ 1" # i=$(expr $i + 1) also works lneué&Oupu

Command-line Parameters

done

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

for Statement

- SyntaX Intro
for hnamel in hwordsi Guioting andFunny Chars
dO Variables
WOOp-bOdy-Statementsi Command Substitution
dO ne Conditions
B Exam p | e: Arithmetic
for planet in Mercury Venus Earth Mars \ Stoterents _

while Statement

Jupliter Saturn Uranus Neptune Pluto

d for Loops: Another Example
O
for ((7 7))

echo splanet S
done Flow Control: | | &&
¢ The backslash “\” quotes the newline. It's just a way of Input & Output

folding a long line in a shell script over two or more lines. Commandine Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

for Loops: Another Example

B Here the shell turns * . txt into a list of file names ending in Intro

13 t Xt ”, Quoting and Funny Chars

Variables

for 1 1n *.txt
do

Command Substitution

Conditions

echo S$i

Arithmetic

grep ’"lost treasure’ Si

Statements
done i £ Statement
while Statement
B You can leave the in (words) out; in that case, (name) is set to
each parameter in turn: ot T
Blocks: {. ..
j_: O Flow Co;trol:}\ | &&

for parameter Input & Output

dO Command-line Parameters

let /4 l — l + l 4 Temporary Files, Signals

Functions

echo "parameter $i is S$parameter”
Debugging

done

Regular Expressions

awk and sed

find

for Loops: second, C-like syntax

®m There is a second (less frequently used, and less portable) Intro
C_Ilke for Ioop Syntax Quoting and Funny Chars

Variables

for (((exprt) ; (expr2) ; (expr3)))

Command Substitution

do
Conditions
(loop-body-statements)
Arithmetic
done
Statements
® Rules: same as for arithmetic conditions—see slide 32 e seement
for Statement
u Exam ple or Loops: Another Example
d = o ! .] beak and continue
for ((1 0, 1 < 10; ++1i)) e e
do Flow Control: | | &&
eChO $ l Input & Output
Command-line Parameters
d
one
Temporary Files, Signals
Functions
Debugging

Regular Expressions

awk and sed

find

break and continue

m Use inside a loop nto
[| Work ||ke they do |n C Quoting and Funny Chars

0 c . Variables
B break terminates the innermost loop; execution goes on
after the loop

Command Substitution

B continue Will skip the rest of the body of the loop, and o
resume execution on the next itteration of the loop. .

if Statement
while Statement
for Statement

for Loops: Another Example
for ((7 7))

Blocks: {...}
Flow Control: | | &&

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

Blocks: {...}

m A subshell is one way of grouping commands together, but
it starts a new process, and any variable changes are
localised

m An alternative is to group commands into a block,
enclosing a set of commands in braces: { ...}

m Useful for grouping commands for file input or output
¢ ... though variables are not localised

B See next slide for another application.

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

i f Statement

while Statement

for Statement

for Loops: Another Example
for ((;7 7))

break and continue

Blocks: {...}

Flow Control: | | &&

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

Error Handling: | |, && and exit

B Suppose we want the user to provide exactly two
parameters, and exit otherwise

m A common method of handling this is something like:
[$# -eq 2] || f echo "Need two parameters”; exit 1; g

®m Read this as “the number of parameters is two OR exit”

m \Works because this logical OR uses short-circuit Boolean
evaluation; the second statement is executed only if the
rst fails (is false)

m | ogical AND “s&” can be used in the same way; the
second statement will be executed only if the rst Is
successful (true)

m A note about blocks: must have semicolon “; " or newline at
end of last statement before closing brace

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

i f Statement

while Statement

for Statement

for Loops: Another Example
for ((7 5))
break and continue
Blocks: {...}

Flow Control: | | &&

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

Output: echo and print£f

m To perform output, use echo, or for more formatting, ntro
pr lnt f . Quoting and Funny Chars

B Use echo —n to print no newline at end.
m Just echo by itself prints a newline

Variables

Command Substitution

Conditions
B printf works the same as in the C programming o
language, except no parentheses or commas: S

$ printf "%$16s\t%8d\n" $my string S$my_number

Input & Output

B Doman printf (or look it up in the bash manual page) to ‘e cex commans

Split with set

read a” abOUt It. More about set, and IFs

Example: Changing IFs

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

Input: the read Command

m For input, use the built-in shell command read Intr
B read reads standard input and puts the result into one or SO G T R
more variables T
c - . Command Substitution
m If use one variable, variable holds the whole line
Conditions
. Syntax Arithmetic
read hvarti . .. S
m Often used with a while loop like this: Input & Output
while read varl var2 npu 1o s Commnt
Split with set
dO More about set,.and IFS
do something with S$varl and S$Svar?2 Feampie Shanang e
d_ one Command-line Parameters

Temporary Files, Signals

m L oop terminates when reach end of le

®m To prompt and read a value from a user, you could do:
while [—z "Svalue"]; do
echo —n "Enter a value: "

Functions

Debugging

Regular Expressions

awk and sed

read wvalue
done
Now do something with Svalue

find

set: Splitting a Multi-Word Variable

B Sometimes may want to split a multi-word variable into I
SI ng |e'W0rd Varlables Quoting and Funny Chars
B read won't work like this: e
MY_FILE_INFO=$(ls -1R | grep $file) SemmEne SRS
Conditions
echo SMY FILE_INFO | read perms links \ Arthmetlo
user group size month day time filename Statements
m Use the builtin command set instead: TS pere
Input: the read Comman
MY FILE_INFO=$(ls —-1R | grep S$file)
oL Eample, Changing 11
S et $MY_F I LE_I NF O Command-line Parameters
permS:$l lil’lk8=$2 User:$3 group:$4 Size:$5 Temporary Files, Signals
month=$6 day=$7 time=$8 filename=$9 Funcions
Debugging

Regular Expressions

awk and sed

find

More about set, and IFs

B set splits its arguments into pieces (usually) at whitespace o
[| It SetS the rSt Value as $1’ the Second as $2’ and SO on. Quoting and Funny Chars

m Note that you can change how set and the shell splits
things up by changing the value of a special variable called
IF'S

B IF'S stands for Internal Field Separator .
® Normally the value of IFS is the string “hspaceihtabihnewlinel” inpus oupus

Variables

Command Substitution

Conditions

Arithmetic

Output: echo and printf

m Next slide shows how changing IFs to a colon let us easily iwusthe caacommand

Split with set

split the PATH Into separate directories: SONSRASIRIN 1o coout - and 15

Example: Changing IFs

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

Example: Changing IFsS

®m Notice that here, | make the change to IFs in a subshell. | intro

have simply typed the loop at the prompt. Quoting and Funny Ghars
m As | said in slide 17, changes in a subshell are local to the ariables

su b S h e| | . Command Substitution

$ echo S$PATH Conditions

/usr/bin:/bin:/usr/X11R6/bin:/home/nicku/bin Arithmetic

$ (IFS=: Statements

> for dir in S$PATH Input & Output

> do TN m—

> echo $dir pe——

S dlemre

>) Command-line Parameters

/usr/bin Temporary Files, Signals

/bin Functions

/usr/X11R6/bin Debugging

/home/nicku/bin Regular Expressions

awk and sed

case Statement

m Similar to the switch statement in C, but more useful and intro

more general Quoting and Funny Chars
B Uses pattern matching against a string to decide on an Yaribes
aCtlon to take Command Substitution
B Syntax: Gonitons
case hexpressionl in Arthmeti
hoatternti) Statements
hstatementsl ; ; Input & Output
hoattern2i) e ke
hstatementsl ; ; T B

shift: Many Places

Command-Line Options—1

Command-Line Options—2
esacC Command-Line Options—3

getopts—4

getopts—b5

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

case Statement: Example

®m This example code runs the appropriate program on a intro
graphics le, depending on the le extension, to convert Quoting and Funny Chars
the le to another format: Variablos
case $ f l l ename l n Command Substitution
x . t l f) Conditions
tifftopnm Sfilename > S$ppmfile Arithmetic
; ; Statements
* o jpg) Input & Output
T jpeg $ fi lename > $ppmfl le Comm;r:ti(;::nljarameters
; ; case Statement: Example
shift U
*) shift: I\/Ipany Places
) Command-Line Options—1
echo —n "Sorry, cannot handle this " CommarLine Options—2
ommand-Line Options—
echo "graphics format" getopts—4
getopts—b5
r
Temporary Files, Signals
esacC
Functions
Debugging

Regular Expressions

awk and sed

shift: Move all Parameters Up

B Sometimes we want to process command-line parameters
In a loop

B The shift statement is made for this
m Say that we have four parameters:

parameter value parameter value
S1 one $3 three
$2 two $4 four

®m Then after executing the shift statement, the values are
NOw:

parameter value parameter value
S1 two $3 four
$2 three $4 no longer exists

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters
case Statement

case Statement: Example
shift: Many Places
Command-Line Options—1
Command-Line Options—2
Command-Line Options—3
getopts—4

getopts—b5

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

shift: Many Places

B You can give a number argument to shi ft: intro
¢ |f before, we have four parameters: Quoting and Funny Ghars
Variables

Command Substitution

parameter value parameter value
Conditions
S1 one S3 three Arithmetic
$ 2 t WO $ 4 f our Statements
Input & Output

+ After executing the statement:

Command-line Parameters

S Shi ft 2 z:z ::::Z:Z::: Example
we have two parameters left: anitt Up

shift: Many Places

Command-Line Options—1
Command-Line Options—2
Command-Line Options—3

parameter value parameter value I—
getopts—b5
$ 1 T hre e $ 3 no longer eXIStS Temporary Files, Signals
$2 four $4 no longer exists Functions
Debugging

Regular Expressions

awk and sed

Command-Line Options—1

B Sometimes we want to modify the behaviour of a shell Intr
script SR T
+ For example, want an option to show more information Variables
on requeSt Command Substitution
¢ could use an option “—v” (for “verbose”) to tell the shell Condttons
script that we want it to tell us more information about Atthmetic
what it is doing S
¢ |f script is called showme, then we could use our —v Input & Output
Option like this: Command-line Parameters
$ showme -v o tment Exampe
¢ the script then shows more information. S S

Command-Line Options—1

Command-Line Options—2
Command-Line Options—3
getopts—4
getopts—b5

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

Command-Line Options—2

m For example, We might provide an option to give a starting intro
point for a script to search for Ssuib programs Quoting and Funny Chrs

m Could make the option —d hdirectoryi s
0 - - - - Command Substitution
m If script is called findsuid, could call it like this:

S findsuid -d /usr Co'nditio?s
to tell the script to start searching in the directory /usr o

. I Statements
Instead of the current directory

Command-line Parameters
case Statement

case Statement: Example
shift Up

shift: Many Places
Command-Line Options—1
Command-Line Options—3
getopts—4

getopts—b5

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

Command-Line Options—3

® \We could do this using shift, a while loop, and a case intro
statement, like this: Quoting and Funny Chars
while [-n "S(echo $1 | grep '—")"] Variables
do Command Substitution
case $ 1 in Conditions
—v) VERBOSE=1 ;; Arithmetic
— d) Statements
S h l ft Input & Output
DIRECTORY= $ 1 Command-line Parameters
case Statement
; ; case Statement: Example
. shift Up
*) echo "usage: $0 [-v] [-d dir]" ohift: Many Places
0 Command-Line Options—1
exlit 1 rr Command-Line Options—2
esacC getopts—4
g h j_ ft getopts—b5
d one Temporary Files, Signals
Functions
Debugging

Regular Expressions

awk and sed

getopts: Command-Line Options—4

B Problems with above solution: in e xibility: S
+ Does not allow options to be “bundled” together like Quoting and Funny Chars
—abc Instead of -a -b -c Variables
¢ Requires a space between option and its argument, i.e., Command Substtution
doesn't let you do —-d/etc aswellas -d /etc Conditons
¢ Better method: use the built-in command getopts: Arthmeti
while getopts "vd:" opt Statements
do Input & Output
case Opt in Command-line Parameters
v) VERBOSE=1;; B
d) DIRECTORY=$0PTARG e
) echo fusage: $0 [v] [d di’ Pt e,
exit 1 Command-Line Options—3
esacC getopts—5
done Temporary Files, Signals
shift ~ $((OPTIND - 1)) i
Debugging

Regular Expressions

awk and sed

find

getopts: Command-Line Options—5

B getopts takes two arguments: intro
¢ rst comes the string that can contain letters and colons. Quotingand Funny chars
n Each letter represents one option Variables
n A colon comes after a letter to indicate that option Command Subsituion
takes an arguement, like -d directory Condtions
» A colon at the beginning makes getopts less noisy, Artmeti
SO you can provide your own error message, as shown setmens
In the example. input & Output
¢ The second is a variable that will hold the option (without commandine parameters
the hyphen “-” -
shift U
m Shift out all processed options using the variable OPTIND, ;gimf;;ﬁﬁgn:'gﬁ;m_1
leaving any other arguments accessible ST
m Search for getopts In the bash man page

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

Temporary Files: mktemp

B Sometimes it is convenient to store temporary data in a Intr
temporary le i B e

B The mktemp program is designed for this e

® \We use it something like this: Zm;dsm
TMPFILE=S (mktemp /tmp/temp.XXXXXX) || exit 1 o

B mktemp WIill create a new le , replacing the “XxXxxxx” with N
a random string oot e vt

B Do man mktemp for the complete manual. S S

Temporary Files, Signals

Temporary Files: mktemp
Signals that Kill

Signals: trap

Signals: t rap Example

Functions

Debugging

Regular Expressions

awk and sed

find

Signals that may Terminate your Script

m Many key strokes will send a signal to a process intro
| Examples Quoting and Funny Chars

Variables

¢ 1 Control-C'sends a SIGINT signal to the current
process running in the foreground

Command Substitution

Conditions

¢ 1 Control-\ 'sends a SIGQUIT signal Aritmesi
® \WWhen you log out, all your processes are sent a SIGHUP s
(hangup) Slgnal Input & Output
. . Command-line Parameters
m |f your script is connected to another process that I
. . o . . emporary Files, Signals
terminates unexpectedly, it will receive a SIGPIPE signal Tongoan Floe e
ignals that Ki
m |f anyone terminates the program with the ki1l program, ol

the default signal is SIGTERM

Functions

Debugging

Regular Expressions

awk and sed

find

Signals: trap

B Sometimes you want your script to clean up after itself Intr
nicely, and remove temporary les Quoting and Funny Chrs
Variables

m Do this using trap

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals
Temporary Files: mktemp
Signals that Kill

Signals: trap
Signals: t rap Example

Functions

Debugging

Regular Expressions

awk and sed

find

Signals: trap Example

B Supose your script creates some temporary les, and you o
want to remove them if your script recieves any of these Quoting and Funny Chars
S I g n al S Variables

B You can “catch” the signal, and remove the les when the SR SHEe
signals are received before the program terminates Contons

Arithmetic

B Suppose the temporary les have names stored in the
variables TEMP1 and TEMP 2

® Then you would trap these signals like this:
trap "rm STEMP1 S$STEMP2" HUP INT QUIT PIPE TERM

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

m Conveniently, (but not very portably), bash provides a R —
“pretend” signal called EXIT; can add this to the list of
signals you trap, so that the temporary les will be -

removed when the program exits normally.

Debugging

Regular Expressions

awk and sed

find

Functions

®m The shell supports functions and function calls iniro

m A function works like an external command, except that it B
does not start another process

B Syntax:

Variables

Command Substitution

. c Conditions
function hfunctnamel
Arithmetic
f
0 Statements
hshell commandsi
Input & Output
g . Command-line Parameters
Or:

Temporary Files, Signals

hunctnamel ()

Functions
f Functions
Parameters in Functions

hShe// CommandSI Example, Calling a Function

g Debugging

Regular Expressions

awk and sed

find

Parameters in Functions

m \Work the same as parameters to entire shell script e
m First parameter is $1, second is $2,..., the tenth Seomese R S
parameteris ${10}, and so on. Variables

Command Substitution

m s# Is the number of parameters passed to the function

Conditions

m As with command line parameters, they are read-only o

m Assign to meaningful names to make your program more S
understandable -

Command-line Parameters

Temporary Files, Signals

Functions
Functions

Parameters in Functions

Example, Calling a Function

Debugging

Regular Expressions

awk and sed

find

Example, Calling a Function

® This is a simple example program: intro
! / bin / sh Quoting and Funny Chars
Variables
function cube { Command Substitution
eChO $ (($1 oS $1 25 $1)) Conditions
} Arithmetic
Statements
j= S (Cube 5) Input & Output
echo S j # Output is 125 Command-line Parameters
m Note the use of command substitution to get a return value Temeorar Fies. Snais
m The function prints result to standard outout. e

Parameters in Functions

Example, Calling a Function

Debugging

Regular Expressions

awk and sed

find

Debugging Shell Scripts—1

m |f you run the script with: into
$ sh —v hscr ipt | Quoting and Funny Chars
then each statement will be printed as it is executed Variables
m |f you run the script with: Gommand Substtin
S sh —x hscript | Conditions
then an execution trace will show the value of all variables Arihmetic
as the script executes. Statements
Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Debugging Shell Scripts—2
Writing Shell Scripts

Useful External Programs—1
Useful External Programs—2

Regular Expressions

awk and sed

find

Debugging Shell Scripts—2

B Use echo to display the value of variables as the program S
exeCUteS Quoting and Funny Chars
®m You can turn the —x shell option on in any part of your Variablos
script with the line: Command Substtution
set —X Conditions
and turn it off with: Arthmetic
set +x Statements
¢ No, that's not a typo: +x turns it off, —x turns it on. Input & Output

Command-line Parameters

B The book Learning the bash Shell includes a bash shell
debugger if you get desperate

Temporary Files, Signals

Functions

Debugging

Debugging Shell Scripts—1
Writing Shell Scripts

Useful External Programs—1
Useful External Programs—2

Regular Expressions

awk and sed

find

Writing Shell Scripts

m Build your shell script incrementally:
¢ Open the editor in one window (and leave it open), have
a terminal window open in which to run your program as
you write it
¢ Jest as you implement. this makes shell script
development easy
+ Do notwrite a very complex script, and then begin
testing it!
m Use the standard software engineering practice you know:
¢ Use meaningful variable names, function names
+ Make your program self-documenting
¢ Add comment blocks to explain obscure or dif cult parts
of your program

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Debugging Shell Scripts—1
Debugging Shell Scripts—2
Useful External Programs—1
Useful External Programs—2

Regular Expressions

awk and sed

find

Useful External Programs—1

Each of these has a manual page, and many have info
manuals. Read their online documentation for more
Information.

B awk — powerful tool for processing columns of data

B basename — remove directory and (optionally) extension
from le name

B cat — copy to standard output

B cut — process columns of data

® du — show disk space used by directories and les
B cgrep, grep — Nd lines containing patterns in les
B find— nd les using many criteria

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Debugging Shell Scripts—1
Debugging Shell Scripts—2
Writing Shell Scripts

Useful External Programs—1

Useful External Programs—2

Regular Expressions

awk and sed

find

Useful External Programs—2

B 1ast — show the last time a user was logged in
B lastb — show last bad log in attempt by a user

B rpm — RPM package manager: manage software package
database

B sed — stream editor: edit les automatically
B sort — sort lines of les by many different criteria
B tr — translate one set of characters to another set

B uniqg — replace repeated lines with just one line,
optionally with a count of the number of repeated lines

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Debugging Shell Scripts—1
Debugging Shell Scripts—2
Writing Shell Scripts

Useful External Programs—1

Useful External Programs—2

Regular Expressions

awk and sed

find

Regular Expressions

B Many programs and programming languages use regular intro
expressions, including Java 1.4 and later, Perl, VB.NET, Quoting and Funny Chars
C# (and any language using the .NET Framework), PHP, Variables
Python, Ruby, Tcl and MySQL (plus many others; even Command Subsiuton
MS Word uses regular expressions under Contons
Edit! Find! More! Use wildcards) Arithmeti

m These programs use regular expressions: Slatements
¢ grep, egrep, sed, awk Input & Output

Command-line Parameters

m All programmer's editors support regular expressions
(Emacs, vi,...)

m Regular expressions provide a powerful language for
manipulating data and extracting important information N
from masses of data

What is In a RegEx?
Literal characters
Character Classes: [...]
[~...]

Match Any Character
Match Start or End
Repetitions

Matching Alternatives: “|”
Examples

Temporary Files, Signals

Functions

Debugging

awk and sed

What is In a Regular Expression?

®m There are two types of character in a regular expression:
¢ Metacharacters
n These include:
n N L+ () [{ |
¢ Ordinary, literal characters:
n 1.e., all the other characters that are not
metacharacters

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions
Regular Expressions
Literal characters
Character Classes: [...]
[~...]

Match Any Character
Match Start or End
Repetitions

Matching Alternatives: “|”
Examples

awk and sed

Literal characters

®m Find all lines containing "chan" in the password le: niro
$ grep chan /etc/passwd Quoting and Funny Chars

®m The reqgular expression is "chan"
m |t is made entirely of literal characters

Variables

Command Substitution

Conditions

m |t matches only lines that contain the exact string o

m It will match lines containing the words chan, changed, S
merchant, mechanism,... Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions
Regular Expressions
What is In a RegEx?
Character Classes: [...]
[~...]

Match Any Character
Match Start or End
Repetitions

Matching Alternatives: “|”
Examples

awk and sed

Character Classes: [...]

m A character class represents one character intro
[Examp|es: Quoting and Funny Chars
Find all words in the dictionary that contain a vowel: Variables
$ grep "[aeiou]" /usr/share/dict/words Command Substitution
Find all lines that contain a digit: Conditions
$ grep "[0123456789]" /usr/share/dict/words Arithmetic
Find all Ilines that contain a digit: R
$ grep "[0-9]" /usr/share/dict/words Input & Output
Find all lines that contain a capital letter: Commandline Parameters
$ grep "[A-Z]" /usr/share/dict/words ooy Fibe. Sonal
Functions
Debugging

Regular Expressions
Regular Expressions
What is In a RegEx?
Literal characters
Character Classes: [...]
[~...]

Match Any Character
Match Start or End
Repetitions

Matching Alternatives: “|”
Examples

awk and sed

Negated Character Classes: [~...]

m Examples of negated character classes: intro

Quoting and Funny Chars

Find all words in the dictionary

Variables

that contain a character that is not a vowel:

s grep "[aeiou]” Just/share/dict/words SRS
Conditions

Two ways of finding all lines that contain
Arithmetic

a character that is not a digit: o

S grep "[0123456789]" /usr/share/dict/words
Input & Output

s grep "[0-9]" /usr/share/dict/words Command e Parametare

Find all lines that contain a character Temporary Files, Signals

that is not a digit, or a letter BT

$ grep "[0-9a-zA-Z]" /usr/share/dict/words Debugging

m Remember: each set of square brackets represents Rogar Exoressons

exactly one character. e na Fegxr
Character Classes: [...]
[~...]
Match Any Character
Match Start or End
Repetitions
Matching Alternatives: “|”
Examples
awk and sed

Match Any Character

®m The dot “.” matches any single character, except a

newline.

® The pattern
Vv e characters

" matches all lines that contain at least

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions
Regular Expressions
What is In a RegEx?
Literal characters
Character Classes: [. . .]
[~...]

Match Start or End
Repetitions

Matching Alternatives: “|”
Examples

awk and sed

Matching the Beginning or End of Line

® To match a line that contains exactly v e characters:
S grep 'T..... $’ /usr/share/dict/words

B The hat, ~ represents the position right at the start of the
line

®m The dollar $ represents the position right at the end of the
line.

m Neither ~ nor $ represents a character

B They represent a position

B Sometimes called anchors, since they anchor the other
characters to a speci ¢ part of the string

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions
Regular Expressions
What is In a RegEx?
Literal characters
Character Classes: [...]
[~...]

Match Any Character
Repetitions

Matching Alternatives: “|”
Examples

awk and sed

Match Repetitions: *, ?, +, {n}, {n, m}

®m To match zero or more: intro

B o * represents zero or more of the lower case letter a, S0 SO G T R
the pattern will match "" (the empty string), “a”, “aa”, Varizbles
“aaaaaaaaaaaaaaa’, “gwewtrryu’ or the “nothing” in Command Subsiitution
front of any string! Conltions

® To match one or more: :‘:‘t

B 2+' matches one or more “a’s N

® 2?' matches zero or one “a” Gommand-ine Parameters

B 2{10}" matches exactly 10 “a”"s Temporary Files, Sgnals

®m a{5,10}" matches between 5 and 10 (inclusive) “a”s Funclons

Dotugging

Regular Expressions
Regular Expressions
What is In a RegEx?
Literal characters
Character Classes: [. . .]
[~...]

Match Any Character
Match Start or End
Matching Alternatives: “|”
Examples

awk and sed

Matching Alternatives: “|”

m the vertical bar represents alternatives:

B The regular expresssion nick|albert |alex' will match
either the string “nick” or the string “albert” or the string
‘alex”

m Note that the vertical bar has very low precedence:

m the pattern ~fred|nurk' matches “fred” only if it occurs
at the start of the line, while it will match “nurk” at any
position in the line

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions
Regular Expressions
What is In a RegEx?
Literal characters
Character Classes: [. . .]
[~...]

Match Any Character
Match Start or End
Repetitions

Matching Alternatives: “|”

Examples

awk and sed

Putting it All Together: Examples

B Find all words that contain at least three ‘a's: intro
S egrep 'a.*a.*a’ /usr/share/dict/words Quoting and Funny Chars
+ Why is this different from Variables
S egrep 'aaa’ /usr/share/dict/words Command Subsitution
m Find all words that begin in 2" and nish in z', ignoring condlions
case: Arithmetic
S egrep —-i ’'"a.*z$’ /usr/share/dict/words Statements
+ How is this different from: Input & Outpur
S egrep —i ’ Aa . *z ’ /usr/Share/diCt/Words Command-line Parameters
® Find all words that contain at least two vowels: S—
Functions
$ grep '[aeiou].*[aeiou]’ /usr/share/dict/words
Debugging
m Find all words that contain exactly two vowels: e Exessons
$ egrep \ Regular Expressions

What is In a RegEx?

’“["aeiou] *[aeiou] ["aeiou] *[aeiou] [Taeiou] *§’ \Liewchaactrs

Character Classes: [...]

/usr/share/dict /words e

Match Any Character
m Find all lines that are empty, or contain only spaces: e or e
$ grep 7 A *$ / file AIternatlves: “

awk and sed

Basic awk

B awk IS a complete programming language

m Mostly used for one-line solutions to problems of extracting
columns of data from text, and processing it

B A complete book is available on awk; you can buy it here:
http://www.oreilly.com/catalog/awkprog3/ oOr

m read it on your computer, as it is the of cial manual for
gawk (GNU awk); do
$ info gawk
or read it in Emacs.
+ A printable postscript le of the book (353 pages) is on
my computer at
/usr/share/doc/gawk-3.1.3/gawk.ps

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

Basic awk

What Does awk Do?
awk Examples
sed—the Stream Editor
sed—Backreferencees
Backrefs Example

find

http://www.oreilly.com/catalog/awkprog3/

What Does awk Do?

B awk reads le(s) or standard input one line at a time, and Intro

m automatically splits the line into fields, and calls them $1, Quoting and Funny Chars
$2,- . ny $NF Variables

m NF is equal to the number of fields the line was split into S—
B $0 contains the whole line

Conditions

Arithmetic

B awk has an option —F that allows you to select another Statements
pattern as the field separator iput & Outpu
+ Normally awk splits columns by white space SO e
B To execute code after all lines are processed, create an Temporary Files, Signals
E N DbIOCk Functions

Debugging

Regular Expressions

awk and sed
Basic awk

What Does awk Do?
awk Examples
sed—the Stream Editor
sed—Backreferencees
Backrefs Example

find

awk Examples

m Print the sizes of all les in current directory: intro
lS —l I aWk 'fprlnt $Sg' Quoting and Funny Chars
m Add the sizes of all les in current directory: Variables
ls -1 | awk 'fsum += $59 ENDfprint sumgQ’ e
- . 5 Conditions
®m Print only the permissions, user, group and le names of o
les in current directory: -
ls -1 | awk ’'fprint $1, $3, $4, SNFQ’ .
nput utpu

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

Basic awk

What Does awk Do?
sed—the Stream Editor
sed—Backreferencees
Backrefs Example

find

sed—the Stream Editor

B scd provides many facilities for editing les
m The substitute command, s/ //, is the most important

B The syntax (using sed as an editor of standard input), is:
S sed '’ s/horiginall /hreplacementi /'

B Example: replace the rst instance of Windows with Linux
on each line of the input:
sed ’'s/Windows/Linux/’

m Example: replace all instances of Windows with Linux on
each line of the input:
sed ’'s/Windows/Linux/g’

+ Note: by default, sed uses “basic regular expressions”,
which require a backslash "\' in front of the
metacharacters '{", (',)", |, +'and 2"

+ To use “extended regular expressions” (which we
covered here), call sed with the option —r, as in this
example:
$ sed -r s/a+//

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

Basic awk
What Does awk Do?
awk Examples

sed—the Stream Editor
sed—Backreferencees
Backrefs Example

find

sed—Backreferencees

B You can match part of the horiginall In a sed —r substitute ntro
command, and put that part back into the replacement Quoting and Funny Chars
part. Variables

m You enclose the part you want to refer to later in (.. .) e

m You can get the rst value in the replacement part by \ 1, o
the second opening parenthesis of (...) by \2, and so i
on.

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

Basic awk

What Does awk Do?
awk Examples
sed—the Stream Editor

sed—Backreferencees

Backrefs Example

find

sed—Backreferencees: Example

m |f you do i
$ find /etc | xargs file -b Quoting and Funny Chars
you will get a lot of output like this: Variables
symbolic link to bgbps.conf.zh_ TW.Bigb Command Substitution
symbolic link to rc.d/rc.local Conditions
symbolic link to rc.d/rc Arithmetic
symbolic link to rc.d/rc.sysinit Statements
symbolic link to ../../X1ll/xdm/Xservers Input & Output

m |f you want to edit each line to remove everything after Commandine Parameters
“symbolic 1link”, then you could pipe the data through R
sed like this: Functions
$ find /etc | xargs file -b \ Debugging
| sed -r ’'s/(symbolic 1link) .*/\1/’ Regular Expressions

m See slide 83 for an application ok and s

What Does awk Do?
awk Examples
sed—the Stream Editor
sed—Backreferencees

Backrefs Example

find

find Examples

® Count the number of unique manual pages on the Intr
CO m p Uter Quoting and Funny Chars
$ find /usr/share/man -type £ | wc -1 Variabes
[| P”nt a table Of types Of Ie under the /etC dlreCtOry, Wlth Command Substitution
the most common le type down at the bottom: Conditone
S find /etc | xXargs file -b \ Arithmetic
| sed -r 's/(symbolic link) .*/\1/’ \ Statements
I S Ort \ Input & Output
I uniq -C \ Command-line Parameters
I Sort -n Temporary Files, Signals
Functions
Debugging

Regular Expressions

awk and sed

find

find Examples

Finding SUID Programs
Long find Example
rpm Queries

Finding SUID Programs

B Finding SUID or SGID les: ntro
S sudo find / —-type £ \ Quoting and Funny Chars
\ (perm -2000 -o —-perm -4000 \) \ veriables
> files.secure Command Substitution
m |et's compare with a list of suiD and sGID les to see if Conditions
there are any changes, since suiD and SGID programs can ==
be a security risk: Statements
$ sudo find / -type f \ Input & Output
\ (perm -2000 -o —-perm -4000 \) \ Command-ine Perameters
| diff - files.secure Temporary Files, Signals
Functions
Debugging

Regular Expressions

awk and sed

find

find Examples

Finding SUID Programs

Long find Example
rpm Queries

A f£ind Example with Many Options

m Set all directories to have the access mode 771, set all ntro
backup les (*.BAK) to mode 600, all shell scripts (*.sh) to Quoting and Funny Chars
mode 755, and all text les (*.txt) to mode 644: Variables
$ find . \(-type d -a exec chmod 771 fg \; \) -o \ Command Substitution
\ (—name "*.BAK" -a exec chmod 600 fg \; \) -o \ Conditions
\(—name "*.sh" -a exec chmod 755 fg \; \) -o \ Arithmetic
\(-name "*.txt" -a exec chmod 644 fg \; \) Statements
Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find
find Examples
Finding SUID Programs

Long £ind Example

rpm Queries

rpm Database Query Commands

® The rpm software package management system includes a
database with very detailed information about every le of
every software package that is installed on the computer.

B You can query this database using the rpm command.

B The manual page does not give the complete picture, but
there is a book called Maximum RPM that comes on the
Red Hat documentation CcD

B This package is installed on ictlab
B You can see the appropriate section at this URL:

http://ictlab.tyict.vtc.edu.hk/doc/maximum-rpm-1.0/html/sl-rpm-query-parts.html

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

find Examples
Finding SUID Programs
Long £ind Example

rpm Queries

http://ictlab.tyict.vtc.edu.hk/doc/maximum-rpm-1.0/html/s1-rpm-query-parts.html

	Intro
	Aim
	Why Shell Scripting?
	Where to get more information
	The Shell is an Interpreter
	The Shebang
	Making the script executable

	Quoting and Funny Chars
	Special Characters
	Special Characters---continued: 2
	Special Characters---continued: 3
	Quoting
	Quoting---2
	Quoting---When to use it?

	Variables
	True and False
	Variables---1
	Variables---Assignments
	Variables---Local to Script
	Variables---Unsetting Them
	Command-line Parameters
	Special Built-in Variables
	Variables: use Braces ${…}
	Braces and Parameters after $9
	More about Quoting

	Command Substitution
	Command Substitution
	Command Substitution---Example

	Conditions
	Conditions---String Comparisons
	Conditions---Integer Comparisons
	Conditions---File Tests, NOT Operator
	Conditions---Combining Comparisons

	Arithmetic
	Arithmetic Assignments
	$((…))
	((…))

	Statements
	if Statement
	while Statement
	for Statement
	for Loops: Another Example
	for ((; ;))
	Blocks: {…}
	Flow Control: || &&

	Input & Output
	Output: echo and printf
	Input: the read Command
	Split with set
	More about set, and IFS
	Example: Changing IFS

	Command-line Parameters
	case Statement
	case Statement: Example
	shift Up
	shift: Many Places
	Command-Line Options---1
	Command-Line Options---2
	Command-Line Options---3
	getopts---4
	getopts: Command-Line Options---5

	Temporary Files, Signals
	Temporary Files: mktemp
	Signals that may Terminate your Script
	Signals: trap
	Signals: trap Example

	Functions
	Functions
	Parameters in Functions
	Example, Calling a Function

	Debugging
	Debugging Shell Scripts---1
	Debugging Shell Scripts---2
	Writing Shell Scripts
	Useful External Programs---1
	Useful External Programs---2

	Regular Expressions
	Regular Expressions
	What is In a Regular Expression?
	Literal characters
	Character Classes: […]
	Negated Character Classes: [^…]
	Match Any Character
	Matching the Beginning or End of Line
	Match Repetitions: *, ?, +, {n}, {n,m}
	Matching Alternatives: ``|''
	Putting it All Together: Examples

	awk and sed
	Basic awk
	What Does awk Do?
	awk Examples
	sed---the Stream Editor
	sed---Backreferencees
	sed---Backreferencees: Example

