
Operating Systems and Systems Integration

Assignment: Shell Programming

Submission: by 8 pm, Sunday, 16 May 2004

Where: Electronically via this url: http://nicku.org/perl2/submit.cgi You can
submit as many times as you like; a later submission will never overwrite an earlier
submission.

If you are inside the Campus, you can use ssl and submit via https//nicku.org/

perl2/submit.cgi

Format: Must be plain text. Submissions in proprietary formats (i.e., Word documents)
will be copied straight to /dev/null and will receive ZERO MARKS.

You can put the shell scripts together as a .zip file or as a tarball. Do not submit
.rar archives.

Add your email address Put your email address in a comment on the second line of
your submissions, so that I can return them marked to you. I will not return assignments
that do not have an email address on the second line of each file.

Weighting: This assignment shall provide 25% of your Continuous Assessment mark.

Marking Criteria: Originality is essential. Efficient implementations get more marks.
Elegant and well-structured solutions get more marks. Flexible solutions get more marks
(i.e., offer more useful options to the user).

Cheating: Your work must be original. Copying will be severely dealt with.

1 Background

1.1 Example Programs and Online Resources

I have written a number of example shell scripts—please download them, run them,
examine them, understand them. Get them from http://nicku.org/ossi/lectures/

shell/bin/.
Please also remember that there are hundreds of excellent examples in the freely

downloadable book Advanced Bash Scripting Guide at http://tldp.org/LDP/abs/html/
index.html.

There is also an excellent book about the awk programming language, available from
http://www.ssc.com/ssc/eap/.

Note: I have put one copy of the book, Learning the Bash Shell, 2nd edition, by
Cameron Newham and Bill Rosenblat, in the library open reserve. Another copy is on
the shelves for loan. I have also purchased some other books on shell programming for
the library. One book you may find helpful is UNIX Power Tools, 3rd edition.

Nick Urbanik <nicku(at)nicku.org> ver. 1.3

http://nicku.org/perl2/submit.cgi
https//nicku.org/perl2/submit.cgi
https//nicku.org/perl2/submit.cgi
http://nicku.org/ossi/lectures/shell/bin/
http://nicku.org/ossi/lectures/shell/bin/
http://tldp.org/LDP/abs/html/index.html
http://tldp.org/LDP/abs/html/index.html
http://www.ssc.com/ssc/eap/
<nicku(at)nicku.org>


Assignment: Shell Programming
Operating Systems and Systems Integration 2

2 Requirements

A number of shell scripts are required. A number of simple programs are required that
exercise techniques that you will use in later programs. A number of these programs re-
quire commands that you may not have used before. Use the man command to investigate
how to use them.

1. Use the command basename and command substitution to write a simple program
that prints its own name. This should still work, even if the program is renamed.
Here is an example of running it:

$ ./myname.sh

This is myname.sh

$ mv myname.sh what-is-my-name

$ ./what-is-my-name

This is what-is-my-name

2. Use the id program to determine the effective user ID number of the user that runs
the program. Print the message “I am root” if the user id number is 0; print a
different message otherwise.

Note: you should check the user id number, not the user id name.

3. Write a script that prints an error message and exits if a lockfile exists. A lockfile
is a file in the /tmp directory, with a name equal to the basename of the script,
followed by the string, “.lock” For example, if the name of the script is lockit,
then the name of the lockfile shall be /tmp/lockit.lock

4. Modify your answer to question 3 so that the lockfile will be /var/lock/subsys/

〈basename of script〉.lock if the user executing it is root, /tmp/〈basename of
script〉.lock otherwise.

5. Modify your answer to question 4 so that:

• if the lockfile exists, the program will print an error message and terminate;

• if the lockfile doesn’t exist, then the program creates it, and makes sure that
the lockfile was successfully created;

• when the program exits normally, it will remove the lockfile.

6. Download the script http://nicku.org/ossi/lectures/shell/bin/trapall. Make
it executable and run it. Send the executing process all signals in the range 1. . . 31
as described in the existing comments in the file. Modify it so that it will still print
the message, but it will exit when it receives any signal. In the modified program,
add comments that:

• explain how you could terminate the original program;

• list all signals in the range 1. . . 31 that the original program could not trap;

• explain why the signals you list cannot be trapped by the original program.

Nick Urbanik <nicku(at)nicku.org> ver. 1.3

http://nicku.org/ossi/lectures/shell/bin/trapall
<nicku(at)nicku.org>


Assignment: Shell Programming
Operating Systems and Systems Integration 3

7. Modify your answer to question 5 so that if the program receives any of the following
signals: INT, TERM, HUP or QUIT, the program will do all of the following:

• print a message;

• remove the lockfile;

• exit with a non-zero exit status.

8. Configure your system with keychain, as described at the web site: http://www.

gentoo.org/proj/en/keychain.xml. Does this work for you? Write a text file
keychain-setup.txt which lists the steps you used to set up keychain in 30 lines
or less. Use your own words.

9. Modify your answer to question 7 so that your program will:

• source the keychain information about where your agent is;

• use the rsync program to copy the contents of the directory ∼/public html

to the directory ∼/public html-backup in your own account on another com-
puter.

For example, if your local account contains the file∼/public html/important.html,
then the file ∼/public html-backup/important.html will be created on the re-
mote computer if it does not exist, and the content will be identical on both ma-
chines.

10. Modify your answer to question 9 so that your program will take a list of names
in the form 〈computer〉:〈destination〉 on the command line, and will make each
location contain a copy of ∼/public html on the local machine.

For example, if the program is called rsync-to-websites, then if it is executed like
this:

$ rsync-to-websites ictlab:/var/www/html/mystuff \

172.19.64.50:/var/www/backup 172.19.64.51:/var/www/html

and if the local machine has a file ∼/public html/important.html, then on the
computer ictlab, a file /var/www/html/mystuff/important.html will be created,
and on the computer 172.19.64.50, the file /var/www/backup/important.html

will be created, and on the computer 172.19.64.51, the file /var/www/html/

important.html will be created.

11. Write a text file problems-with-locking.txt in which you answer the following
question: What are the limitations of the file locking system that you have imple-
mented in question 10? Explain how it can it go wrong. What is the technical term
for this limitation?

12. Write a text file crontab-setup.txt in which you explain how you can set up the
cron program to execute the program you wrote as your answer to question 10
every morning at 3.24 am. It should be executed with a command line shown in the
previous question.

See man 5 crontab and man crontab.

Nick Urbanik <nicku(at)nicku.org> ver. 1.3

http://www.gentoo.org/proj/en/keychain.xml
http://www.gentoo.org/proj/en/keychain.xml
<nicku(at)nicku.org>


Assignment: Shell Programming
Operating Systems and Systems Integration 4

3 Notes

• You need to submit 12 text files, most of which contain a shell script, but some of
which contain plain text answering the question.

• One file, your answer to question 6, will be a shell script that contains some text
answering the questions. That file will still be executable as a shell script; the text
you write in that file should be comments; each line of text that is not the actual
program will begin with the comment character, ‘#’.

• The twelve files should be zipped or tarred together into one compressed file, and
be submitted online as explained on page 1.

• Your program that answers question 10 on the previous page should provide the
features required for questions 7 and 4, and should use keychain to access your ssh
agent.

• Your programs should all provide proper handling of error conditions and should all
print a suitable error message and exit if some error condition prevents the program
completing normal execution.

• You may assume that the programs execute on a system that complies with the
current posix standards.

• You may ask any questions by email, to the address Nick Urbanik <nicku@nicku.org>.
The subject line should contain the text, “OSSI ASSIGNMENT”. If I answer your ques-
tion, I will send the answer to all students, but I will not reveal the identity of the
person who asked the question.

• Although I am giving you a long time to hand in this assignment, I strongly advise
you to begin it immediately. I am not responsible for those who leave it to the
deadline and who then disturb their own preparation for the examinations.

Nick Urbanik <nicku(at)nicku.org> ver. 1.3

<nicku(at)nicku.org>

	Background
	Example Programs and Online Resources

	Requirements
	Notes

