@ .0
& OPERATING SYSTEMS AND SYSTEMS INTEGRATION

Processes: Writing a Simple Shell

1 Aim

The successful student will write a very simple shell, i.e., a program that can interactively
start other programs.

2 Background

A shell is a program that can start other programs. A real shell can do lots of other things
(it supports a programming language, for example), but here we keep it very simple, and
restrict it to starting other programs.

2.1 How do you Run an External Program as a New Process?

e Replace the instructions in a running process with a new set of instructions, using
the exec function

e First make an exact copy of your process using fork()

e Then replace the contents of this new process with another program, using exec().

2.2 The execx() functions
e There are six kinds of execx() function; see man 3 exec and man 2 execve
e We will use execl():
int execl(const char *path, const char *arg, ...);
Parameter number:

1. gives full path of the program file you want to execute

2. gives name of the new process

3. specifies the command line arguments you pass to the program
4

. (in this example) is a NULL pointer to end the paramter list. We must always
put a NULL pointer at the end of this list.

e Program [l on the following page|is a simple example, without error checking.

As we saw in the lecture, Linux and Unix provide simple system calls to manage
processes:

#include <sys/types.h>
#include <unistd.h>
pid_t fork(void);

Returns twice; returns 0 if child, returns child’s PID if parent, returns —1 if error.

Nick Urbanik <nicku(at)nicku.org> ver. 1.1

<nicku(at)nicku.org>

Processes: Writing a Simple Shell
Operating Systems and Systems Integration 2

Program 1 A simple program using fork() and execl(). It does no error checking.

#include <stdio.h>
#include <unistd.h>

int main()

{
printf("hello world\n");
int pid = fork();
printf("fork returned %d\n", pid);
if (pid == 0)
execl("/bin/1s", "1ls", NULL);
else
printf("I’m the parent\n");
}

2.3 What Happens Between fork() and exec() and After?

e Before calling fork():

o There is one process, the parent process.
o After calling fork():

o Two process are running, both still have the original code
e After calling exec():

o The child process, which called exec (), now has completely different code.

Program [2|is called print.c and prints a number n times. Program |3 on the following]

Program 2 A simple program print.c that takes two numbers as parameters, and
repeats the first number the number of times given by the second number.

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])

{
// argv[0] is the program name
int num = atoi(argv[1]);
int loops = atoi(argv[2]);
int i;
for (i = 0; i < loops; ++i)
printf("%d ", num);
}

is called call-print.c, and is written to call the program print.c.

2.4 Exercise Set 1

1. Copy the programs from the network filesystem at /home/nfs/processes-and-threads
to a new directory in your $HOME.

Nick Urbanik <nicku(at)nicku.org> ver. 1.1

<nicku(at)nicku.org>

Processes: Writing a Simple Shell
Operating Systems and Systems Integration 3

Program 3 A program call-print.c that uses execl() to call program
print.c, in two separate processes.

#include <stdio.h>

#include <unistd.h>

int main()

{
printf("hello world\n");
int pid = fork();
printf("fork returned %d\n", pid);
if (pid == 0)
execl("./print", "print", "1", "100", NULL);
else
execl("./print", "print", "2", "100", NULL);
}

2. Compile and run program |1 on the preceding page]

$ gcc -o fork-1 fork-1.c
$./fork-1

3. Modify the program |1 on the previous page|so that it runs the program 1s with the
option -1.

4. Compile the program print.c in program [2 on the preceding page| and run it:

$ gcc -o print print.c
$./print 10 5

Try running it with a few different numbers.
5. Compile the main program call-print.c in program [3| and run it.

6. Try printing each number: 100 times, 1000 times, 10,000 times, 100,000 times.

2.5 Implementing a Shell

Prompt user
Get command
If not time-to-exit
Fork new process
Replace new process with either who, ls or uptime
Read next command

Program 4 on the following page|is a simple example shell.

2.6 Exercise Set 2

1. Implement program 4 on the next pagel and run it. What if you give it a wrong
number?

Nick Urbanik <nicku(at)nicku.org> ver. 1.1

<nicku(at)nicku.org>

Processes: Writing a Simple Shell
Operating Systems and Systems Integration 4

Program 4 A simple shell program, shell-1.c.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

void print_menu(void)

{

printf("Enter 1=who, 2=1s, 3=uptime -> ");

int main()

{

int cmd;
print_menu();
scanf ("%d", &cmd);
while (cmd != 0) {
int pid = fork();
if (pid == 0) {
if (cmd == 1)
execl("/usr/bin/who", "who", NULL);
if (cmd == 2)
execl("/bin/1s", "1ls", NULL);
if (cmd == 3)
execl("/usr/bin/uptime", "uptime", NULL);
exit(1);
}
/* add: wait(NULL); here */
print_menu();
scanf("%d", &cmd);

. Open a second shell window, and monitor the creation of zombie processes by exe-

cuting the command watch -nl "ps aux | grep ’ [Z] "

. Modify the program to print an error message if a command is not supported.

. Add the the call to wait() in the loop before printing the menu. What is the

difference in the behaviour of your program?

. Modify the program and add two more commands to your shell, such as date and

hostame.

. Modify the program so that it will exit cleanly if it reads end of file. You can manu-

ally provide end of file to a process reading standard input by pressing (Control-d).
Hint: see man scanf.

. Examine the program simplesh.c. Modify it to implement background or fore-

ground processes.

Nick Urbanik <nicku(at)nicku.org> ver. 1.1

<nicku(at)nicku.org>

	Aim
	Background
	How do you Run an External Program as a New Process?
	The exec*() functions
	What Happens Between fork() and exec() and After?
	Exercise Set 1
	Implementing a Shell
	Exercise Set 2

