
Operating Systems and Systems Integration

Processes: Writing a Simple Shell

1 Aim

The successful student will write a very simple shell, i.e., a program that can interactively
start other programs.

2 Background

A shell is a program that can start other programs. A real shell can do lots of other things
(it supports a programming language, for example), but here we keep it very simple, and
restrict it to starting other programs.

2.1 How do you Run an External Program as a New Process?

• Replace the instructions in a running process with a new set of instructions, using
the exec function

• First make an exact copy of your process using fork()

• Then replace the contents of this new process with another program, using exec().

2.2 The exec*() functions

• There are six kinds of exec*() function; see man 3 exec and man 2 execve

• We will use execl():

int execl(const char *path, const char *arg, ...);

Parameter number:

1. gives full path of the program file you want to execute

2. gives name of the new process

3. specifies the command line arguments you pass to the program

4. (in this example) is a NULL pointer to end the paramter list. We must always
put a NULL pointer at the end of this list.

• Program 1 on the following page is a simple example, without error checking.

As we saw in the lecture, Linux and Unix provide simple system calls to manage
processes:

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

Returns twice; returns 0 if child, returns child’s pid if parent, returns −1 if error.

Nick Urbanik <nicku(at)nicku.org> ver. 1.1

<nicku(at)nicku.org>

Processes: Writing a Simple Shell
Operating Systems and Systems Integration 2

Program 1 A simple program using fork() and execl(). It does no error checking.

#include <stdio.h>

#include <unistd.h>

int main()

{

printf("hello world\n");

int pid = fork();

printf("fork returned %d\n", pid);

if (pid == 0)

execl("/bin/ls", "ls", NULL);

else

printf("I’m the parent\n");

}

2.3 What Happens Between fork() and exec() and After?

• Before calling fork():

◦ There is one process, the parent process.

• After calling fork():

◦ Two process are running, both still have the original code

• After calling exec():

◦ The child process, which called exec(), now has completely different code.

Program 2 is called print.c and prints a number n times. Program 3 on the following

Program 2 A simple program print.c that takes two numbers as parameters, and
repeats the first number the number of times given by the second number.

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

// argv[0] is the program name

int num = atoi(argv[1]);

int loops = atoi(argv[2]);

int i;

for (i = 0; i < loops; ++i)

printf("%d ", num);

}

page is called call-print.c, and is written to call the program print.c.

2.4 Exercise Set 1

1. Copy the programs from the network filesystem at /home/nfs/processes-and-threads
to a new directory in your $HOME.

Nick Urbanik <nicku(at)nicku.org> ver. 1.1

<nicku(at)nicku.org>

Processes: Writing a Simple Shell
Operating Systems and Systems Integration 3

Program 3 A program call-print.c that uses execl() to call program 2 on the pre-
vious page, print.c, in two separate processes.

#include <stdio.h>

#include <unistd.h>

int main()

{

printf("hello world\n");

int pid = fork();

printf("fork returned %d\n", pid);

if (pid == 0)

execl("./print", "print", "1", "100", NULL);

else

execl("./print", "print", "2", "100", NULL);

}

2. Compile and run program 1 on the preceding page.

$ gcc -o fork-1 fork-1.c

$./fork-1

3. Modify the program 1 on the previous page so that it runs the program ls with the
option -l.

4. Compile the program print.c in program 2 on the preceding page and run it:

$ gcc -o print print.c

$./print 10 5

Try running it with a few different numbers.

5. Compile the main program call-print.c in program 3 and run it.

6. Try printing each number: 100 times, 1000 times, 10,000 times, 100,000 times.

2.5 Implementing a Shell

Prompt user

Get command

If not time-to-exit

Fork new process

Replace new process with either who, ls or uptime

Read next command

Program 4 on the following page is a simple example shell.

2.6 Exercise Set 2

1. Implement program 4 on the next page and run it. What if you give it a wrong
number?

Nick Urbanik <nicku(at)nicku.org> ver. 1.1

<nicku(at)nicku.org>

Processes: Writing a Simple Shell
Operating Systems and Systems Integration 4

Program 4 A simple shell program, shell-1.c.

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

void print_menu(void)

{

printf("Enter 1=who, 2=ls, 3=uptime -> ");

}

int main()

{

int cmd;

print_menu();

scanf("%d", &cmd);

while (cmd != 0) {

int pid = fork();

if (pid == 0) {

if (cmd == 1)

execl("/usr/bin/who", "who", NULL);

if (cmd == 2)

execl("/bin/ls", "ls", NULL);

if (cmd == 3)

execl("/usr/bin/uptime", "uptime", NULL);

exit(1);

}

/* add: wait(NULL); here */

print_menu();

scanf("%d", &cmd);

}

}

2. Open a second shell window, and monitor the creation of zombie processes by exe-
cuting the command watch -n1 "ps aux | grep ’ [Z] ’"

3. Modify the program to print an error message if a command is not supported.

4. Add the the call to wait() in the loop before printing the menu. What is the
difference in the behaviour of your program?

5. Modify the program and add two more commands to your shell, such as date and
hostame.

6. Modify the program so that it will exit cleanly if it reads end of file. You can manu-
ally provide end of file to a process reading standard input by pressing

�
 �	Control-d .
Hint: see man scanf.

7. Examine the program simplesh.c. Modify it to implement background or fore-
ground processes.

Nick Urbanik <nicku(at)nicku.org> ver. 1.1

<nicku(at)nicku.org>

	Aim
	Background
	How do you Run an External Program as a New Process?
	The exec*() functions
	What Happens Between fork() and exec() and After?
	Exercise Set 1
	Implementing a Shell
	Exercise Set 2

