[B
The Linux Operating System

An Overview

Nick Urbanik <nicku (at)nicku.org>
Copyright Conditions: GNU FDL (see http://www.gnu.org/licenses/fdl.html)

A computing department

L]

0881 — Overview of Linux — ver. 1.0-p. 1/27

Generic Features of Unix

B

Component-based systems

Very popular with technically skilled
Not ‘solution’ oriented

Building blocks not the building
Highly network-aware

o o o o 0 @

Robust, powerful, reliable

L]

0881 — Overview of Linux — ver. 1.0 ~p. 3127

Fundamental Characteristics of Linux

[]

Multi-tasking

Multi-user access

Multi-processor

Architecture independence

POSIX 1003.1 plus basic System V and BSD
Protected memory mode

Multiple filesystem types

Comprehensive networking (TCP/IP and others)

Multiple executable formats (MS-DOS, iBCS UNIX,
SCO, etc)

L]

0SS1 — Overviow o Linux — ver. 1.0 ~p. 5/27

o @ o o o o 0 0 @

Protected memory mode
Uses the processor’s protection mechanisms T

»® Prevent access to memory already allocated to kernel
or other processes

»® Bad programs can’t crash the system
» Theoretically

Objectives
B

fHaving completed this module, you will have an overview of
a Linux system, including its:
» Underlying philosophy
» System layering — kernel vs. applications
» Core services
#® Multiuser and timesharing facilities
» File System
» Network Services
Desktop and X windowing system

L]

Linux — The Kernel of a System

[]

Compilers DBMS Egiet);trs Mailers G:gg:;cs
Shells & Utilities X Windowing System
\ \
Kernel
N N B
Hardware
L Figure 1: kernel-layering J
a Whatic rallad | iniiv ie artiialhy a ~nllantisnombuo . 1o-5 427

Multiuser Multitasking and Time-sharing

[]

» Designed as a multi-user system

» Each user’s shells, apps and commands are
separate processes

» Number of simultaneous users limited only by:
s CPU speed and available memory
s Min. response times required by users/apps

» Multi-tasking:
s Many jobs can be under way at the same time
s Jobs truly simultaneous on multi-cpu

Time-sharing: A single cpu is shared by all processes
» Processes exec briefly, passing cpu to others
s Process switches occur in miliseconds or less
L » Kernel gives process a sense of total control J

0SS1 — Overviow of Linux — ver. 1.0 ~p. 6/27

Multiple Filesystem Types

[]

» Native FS is ext3 (Third Extended File System)
» File names up to 255 chars
s More secure than conventional UNIX
» Others include:
s MS-DOS (FAT16), VFAT, FAT32
1ISO9660 (CD-ROM)
HPFS (0S/2)
NTFS (Windows NT)
reiserfs, XFS, other journalling file systems for Linux,
UPS, SysV and other proprietory UNIX
NFS (Unix network file system)
SMB / CIFS (MS Windows file sharing)

e o b b 0o 0 ©

]

http://www.gnu.org/licenses/fdl.html

The Many Faces of a GNU/Linux System The Filesystem
[T B

» The user may see up to five aspects of Linux: » The filesystem contains all data in the system
s the filesystem » A name in the filesystem can refer to:
s processes s a data file, which can be:
s the shell s a plain file
s the X windowing system s a directory
s Inter-Process Communication (IPC) s a device (disk, tape etc.)

® The system is very highly configurable . igtse'f”?' memory A
» Different users may experience totally different views of ’_ |r'1 ormation (the pro'c system)
the same system » Directories are groups of files

» Multiple simultaneous users are normal » Grouped in hierarchical trees

» Linux is designed from the ground up as a multi-user » Files are fully specified with their pathname
L system, NOT a ‘personal’ system J L’ An original Unix structure; copied by most OSs J
Filenames Filename Extensions and File Types

[b

® Maximum length depends on filesystem type

B

» Filenames don’t determine other attributes of file,
s Most allow up to 255 characters i.e. do not, automatically, cause command

Can use almost any character in a filename, but avoid interpreters to treat them in a particular way
ambiguity by sticking to: » However:
s (A-Z) Uppercase letters » Extensions can enable meaningful naming and
. (a_z) Lowercase letters automatic file manipulation

s (0-9) Numbers s C compilers and some other programs do depend on
s (.) Full-stop specific file extensions to carry out particular tasks
s (,) Comma » Common conventions for extensions:
s (_) Underscore
s (-) Hyphen
» Should convey meaningful info about contents ‘ Filename ‘ Meaning of Extension ‘ J
L’ Type longer filenames using completion for: J program.c C programming source file

e Filanameas 0851 — Overviw of Linx —ver. 1.0 5. 11727 [T———

Hidden Filenames The Shell (bash)

[b

» Filenames beginning with a full-stop are hidden
» Typically used:

s To hide personal configuration files
s To avoid cluttering dirs with rarely used files

» Every dir contains 2 special hidden files:

» A shellis a program that you interact with

The current directory file
The parent directory file

L I

0SSI — Overviow of Linux — ver. 1.0~ p. 13/27

Key Features of the Bash Shell Interacting with a Linux ‘Terminal’

[b]

]

ver. 1.0-p. 14127

Command history # Linux can support any number of ‘terminal’ types
Command aliasing s nowadays, monitor/keyboard combinations
Shell scripting s previously, dumb terminals

s occasionally, printers (debugging servers)

® Most will use the console or a windowed terminal, but if
not:

» Linux usually keeps a database of terminal

Filename completion
Command completion
Command line editing (emacs and vi styles)

Job control
Key Bindings
Directory stacking

capabilities in /etc/termcap@

» If your terminal type is not recorded in
/etc/termcap, you'll have problems running
certain programs e.g.

e © o o o o o o 0 @

Tilde directory notation s cursor driven apps (top, linuxconf, vi etc)

Help function, e.g J L s The environmental variable TERM tells programs J
T what terminal type you are using

L

°

Software Tools: The UNIX Philosophy Tasks/Processes

-

K]

K]

1-02

-

K]

K

K]

L

0o, B

True UNIX-like systems treat programs as tools
s Each tool should:

s Do just one thing well

s Be generic (untied to specific applications)
» For new jobs, build new tools
s (Re-)combine, don’t complicate old tools
Linux can do this because it has:
s two simple objects:

A program is an executable object, stored in a file
A process is an executing object, i.e. A
s an instance of a program currently being run

Existing processes can ‘fork’ to create other processes
» the only way to make new processes

A user may run multiple copies of same program
Multiple users may run single/multiple copies

o

L)

o o

s the file » System tracks ownership and permission
s the process
s simple methods of connecting: ?Processes are often called tasks, as in ‘multi-tasking’

s processes to files

s processes to processes J L J

Process Communication Re-directing I/0O to and from Files
Processes may need to co-operate by T f.- Most processes will take input from the keyboard and T
s sharing files output to the screen
s signalling events # Both input and output streams can be re-directed
s direct transfer of data to/from files
s pipelines (data streams) » Output to a file (creating or overwriting):

s synchronising with each other $ 1ls > my-system.txt
Linux provides facilities for: » Appending output to a file: $ who >>
s signals my-system.txt

s shared memory

s pipes, both named and unnamed
» semaphores

s and others

Processes may use network connections for J L J
communication, permitting client-servermodel . - oo s 0561 — Ovaniewc L — . 10 2027

Re-directing 1/0 to and from Files (continued)

[]

» Take input from one file, output to another:
$ sort < /etc/passwd > pwd.sorted

passwd

@ pwd.sorted %

Pipes & Tools Linux as a Programming Environment

Linux tools act as filters: T f: Hierarchical Filestore T
s taking data from input streams, modifying it, sending » Extensive set of powerful tools

it elsewhere s for software production, admin and support
» expecting data to come from other tools » A common system interface

. grgd:c;rég“?:)tgut which any other tool can process, » only one set of procedures to learn

#® Processes interface with anonymous files
» programs output to files or devices identically

L

‘quo

uus
u

3

One tool’s output is connected to another’s input:
s Indirectly, via a file created by the first tool
s Directly, via a pipe or pipeline ® Modular architecture provides for a completely

, customised OS, e.g.
For example, to page through a reverse-sorted version An OS dedicated solelv o araphics renderin
of your password file on screen: - y 10 grap [¢]

$ sort -r < /etc/passwd | less s A general-purpose system on one floppy

J L: Flexible user interface allows for uniquely customised J
programming environments

Networking

® Linux is a network operating system.

The Internet network protocols (TCP/IP) are
implemented in the kernel

» Although other media are supported (e.g. radio,
infra-red), links are usually across:

» Ethernet

s Serial Line (Point-to-point)
» Proprietory file/print serving protocols supported:

s Appletalk
s DECNET

s IPX/ Novell Netware

L

s SMB /CIFS (MS Windows/NT)

]

0SSI— Overview of Linux — ver. 1.0~ . 24727

Documentation

-

» Copious, but fragmented and/or duplicated

B

Programmer’s Manual /usr/man

The classic ‘man pages', first stop for skilled users, worth learning

info pages

hypertext browsable texts, often identical or updated versions of n
pages

/usr/share/doc/program-name

ascii’/html docs installed with the named program

Howtos Tutorials on Linux-related topics, available on-line if installed (usu:
in /usr/share/doc)
www Recently-released programs are usually documented on authoris

web sites, many (including older tools) are documented by
third-party sites

Table 2: Sources of Linux Documentation

L

0881 — Overview of Linux

TCP/IP
[]

» A suite of Internet-standard protocols and apps for
managing data transfers
» Depicted as a ‘stack’

» hardware and transport control protocols at the
bottom

s user applications (e.g. browsers) at the top
» Client-server apps provide facilities for:
Remote login
File transfer
Resource sharing (e.g. expensive peripherals)
Remote command execution
Email (internet/intranet/extranet)
Web browsing J

o
o
>
o
»
o

L

Using the man pages (On-Line Manual)
f’ Use man to see man pages on a named command, e.g T

$ man date

The result should be something like:

DATE (1) FSF

NAME

date - print or set the system date and time

SYNOPSIS
date [OPTION]... [+FORMAT]
date [-u|--utc|--universal] [MMDDhhmm[[CC]YY][.ss]]

® DATE (1) Shows page is in manual section 1 J
» To view a page from a certain section use:

S man —S sertinn—nimher commaA psl-ewmmme e 10-p 2727

	Objectives
	Generic Features of Unix
	Linux --- The Kernel of a System
	Fundamental Characteristics of Linux
	Multiuser Multitasking and Time-sharing
	Protected memory mode
	Multiple Filesystem Types
	The Many Faces of a GNU/Linux System
	The Filesystem
	Filenames
	Filename Extensions and File Types
	Hidden Filenames
	The Shell ({pgn bash})
	Key Features of the Bash Shell
	Interacting with a Linux `Terminal'
	Software Tools: The UNIX Philosophy
	Tasks/Processes
	Process Communication
	Re-directing I/O to and from Files
	Re-directing I/O to and from Files (continued)
	Pipes & Tools
	Linux as a Programming Environment
	Networking
	TCP/IP
	Documentation
	Using the {kwd man pages} (On-Line Manual)

