
The Linux Operating System

An Overview

Nick Urbanik <nicku(at)nicku.org>

Copyright Conditions: GNU FDL (see http://www.gnu.org/licenses/fdl.html)

A computing department

OSSI — Overview of Linux — ver. 1.0 – p. 1/27

http://www.gnu.org/licenses/fdl.html

Objectives

Having completed this module, you will have an overview of
a Linux system, including its:

Underlying philosophy

System layering — kernel vs. applications

Core services

Multiuser and timesharing facilities

File System

Network Services

Desktop and X windowing system

OSSI — Overview of Linux — ver. 1.0 – p. 2/27

Generic Features of Unix

Component-based systems

Very popular with technically skilled

Not ‘solution’ oriented

Building blocks not the building

Highly network-aware

Robust, powerful, reliable

OSSI — Overview of Linux — ver. 1.0 – p. 3/27

Linux — The Kernel of a System

Compilers DBMS
Text

Editors
Mailers

Graphics
Apps

Shells & Utilities X Windowing System

Kernel

Hardware

Figure 1: kernel-layering

What is called Linux is actually a collection ofOSSI — Overview of Linux — ver. 1.0 – p. 4/27

Fundamental Characteristics of Linux

Multi-tasking

Multi-user access

Multi-processor

Architecture independence

POSIX 1003.1 plus basic System V and BSD

Protected memory mode

Multiple filesystem types

Comprehensive networking (TCP/IP and others)

Multiple executable formats (MS-DOS, iBCS UNIX,
SCO, etc)

OSSI — Overview of Linux — ver. 1.0 – p. 5/27

Multiuser Multitasking and Time-sharing

Designed as a multi-user system

Each user’s shells, apps and commands are
separate processes

Number of simultaneous users limited only by:
CPU speed and available memory
Min. response times required by users/apps

Multi-tasking:

Many jobs can be under way at the same time

Jobs truly simultaneous on multi-cpu

Time-sharing: A single cpu is shared by all processes

Processes exec briefly, passing cpu to others

Process switches occur in miliseconds or less

Kernel gives process a sense of total control

OSSI — Overview of Linux — ver. 1.0 – p. 6/27

Protected memory mode

Uses the processor’s protection mechanisms

Prevent access to memory already allocated to kernel
or other processes

Bad programs can’t crash the system

Theoretically

OSSI — Overview of Linux — ver. 1.0 – p. 7/27

Multiple Filesystem Types

Native FS is ext3 (Third Extended File System)

File names up to 255 chars

More secure than conventional UNIX

Others include:

MS-DOS (FAT16), VFAT, FAT32

ISO9660 (CD-ROM)

HPFS (OS/2)

NTFS (Windows NT)

reiserfs, XFS, other journalling file systems for Linux,

UPS, SysV and other proprietory UNIX

NFS (Unix network file system)

SMB / CIFS (MS Windows file sharing)

OSSI — Overview of Linux — ver. 1.0 – p. 8/27

The Many Faces of a GNU/Linux System

The user may see up to five aspects of Linux:

the filesystem

processes

the shell

the X windowing system

Inter-Process Communication (IPC)

The system is very highly configurable

Different users may experience totally different views of
the same system

Multiple simultaneous users are normal

Linux is designed from the ground up as a multi-user
system, NOT a ‘personal’ system

OSSI — Overview of Linux — ver. 1.0 – p. 9/27

The Filesystem

The filesystem contains all data in the system

A name in the filesystem can refer to:

a data file, which can be:
a plain file
a directory

a device (disk, tape etc.)

internal memory

OS information (the proc system)

Directories are groups of files

Grouped in hierarchical trees

Files are fully specified with their pathname

An original Unix structure; copied by most OSs

OSSI — Overview of Linux — ver. 1.0 – p. 10/27

Filenames

Maximum length depends on filesystem type

Most allow up to 255 characters

Can use almost any character in a filename, but avoid
ambiguity by sticking to:

(A-Z) Uppercase letters

(a-z) Lowercase letters

(0-9) Numbers

(.) Full-stop

(,) Comma

(_) Underscore

(-) Hyphen

Should convey meaningful info about contents

Type longer filenames using completion for:

Filenames OSSI — Overview of Linux — ver. 1.0 – p. 11/27

Filename Extensions and File Types

Filenames don’t determine other attributes of file,

i.e. do not, automatically, cause command
interpreters to treat them in a particular way

However:

Extensions can enable meaningful naming and
automatic file manipulation

C compilers and some other programs do depend on
specific file extensions to carry out particular tasks

Common conventions for extensions:

Filename Meaning of Extension

program.c C programming source file
OSSI — Overview of Linux — ver. 1.0 – p. 12/27

Hidden Filenames

Filenames beginning with a full-stop are hidden

Typically used:

To hide personal configuration files

To avoid cluttering dirs with rarely used files

Every dir contains 2 special hidden files:

. The current directory file

.. The parent directory file

OSSI — Overview of Linux — ver. 1.0 – p. 13/27

The Shell (bash)

A shell is a program that you interact with

User

Shell

Kernel
OSSI — Overview of Linux — ver. 1.0 – p. 14/27

Key Features of the Bash Shell

Command history

Command aliasing

Shell scripting

Filename completion

Command completion

Command line editing (emacs and vi styles)

Job control

Key Bindings

Directory stacking

Tilde directory notation

Help function, e.g.

$ help history
OSSI — Overview of Linux — ver. 1.0 – p. 15/27

Interacting with a Linux ‘Terminal’

Linux can support any number of ‘terminal’ types

nowadays, monitor/keyboard combinations

previously, dumb terminals

occasionally, printers (debugging servers)

Most will use the console or a windowed terminal, but if
not:

Linux usually keeps a database of terminal
capabilities in /etc/termcap a

If your terminal type is not recorded in
/etc/termcap, you’ll have problems running
certain programs e.g.

cursor driven apps (top, linuxconf, vi etc)

The environmental variable TERM tells programs
what terminal type you are using

OSSI — Overview of Linux — ver. 1.0 – p. 16/27

Software Tools: The UNIX Philosophy

True UNIX-like systems treat programs as tools

Each tool should:
Do just one thing well
Be generic (untied to specific applications)

For new jobs, build new tools

(Re-)combine, don’t complicate old tools

Linux can do this because it has:

two simple objects:
the file
the process

simple methods of connecting:
processes to files
processes to processes

FILE 2

PROCESSFILE 1
OSSI — Overview of Linux — ver. 1.0 – p. 17/27

Tasks/Processes

A program is an executable object, stored in a file

A process is an executing object, i.e. a

an instance of a program currently being run

Existing processes can ‘fork’ to create other processes

the only way to make new processes

A user may run multiple copies of same program

Multiple users may run single/multiple copies

System tracks ownership and permission

aProcesses are often called tasks, as in ‘multi-tasking’

OSSI — Overview of Linux — ver. 1.0 – p. 18/27

Process Communication

Processes may need to co-operate by

sharing files

signalling events

direct transfer of data

pipelines (data streams)

synchronising with each other

Linux provides facilities for:

signals

shared memory

pipes, both named and unnamed

semaphores

and others

Processes may use network connections for
communication, permitting client-server modelOSSI — Overview of Linux — ver. 1.0 – p. 19/27

Re-directing I/O to and from Files

Most processes will take input from the keyboard and
output to the screen

Both input and output streams can be re-directed
to/from files

Output to a file (creating or overwriting):
$ ls > my-system.txt

Appending output to a file: $ who >>

my-system.txt

OSSI — Overview of Linux — ver. 1.0 – p. 20/27

root pts/1 Sep 5 10:50

root pts/2 Sep 2 14:47

root pts/3 Sep 5 10:56

root pts/4 Sep 4 17:27

kenny

khc

kkc

montague

kenny

khc

kkc

montague

ls

my−system.txt

my−system.txt

who

>

>>

20-1

Re-directing I/O to and from Files (continued)

Take input from one file, output to another:
$ sort < /etc/passwd > pwd.sorted

sort

>

<

passwd

pwd.sorted

OSSI — Overview of Linux — ver. 1.0 – p. 21/27

Pipes & Tools

Linux tools act as filters:

taking data from input streams, modifying it, sending
it elsewhere

expecting data to come from other tools

producing output which any other tool can process,
e.g. ASCII text

One tool’s output is connected to another’s input:

Indirectly, via a file created by the first tool

Directly, via a pipe or pipeline

For example, to page through a reverse-sorted version
of your password file on screen:
$ sort -r < /etc/passwd | less

<

sort −r

|

OSSI — Overview of Linux — ver. 1.0 – p. 22/27

Linux as a Programming Environment

Hierarchical Filestore

Extensive set of powerful tools

for software production, admin and support

A common system interface

only one set of procedures to learn

Processes interface with anonymous files

programs output to files or devices identically

Modular architecture provides for a completely
customised OS, e.g.

An OS dedicated solely to graphics rendering

A general-purpose system on one floppy

Flexible user interface allows for uniquely customised
programming environments

OSSI — Overview of Linux — ver. 1.0 – p. 23/27

Networking

Linux is a network operating system.

The Internet network protocols (TCP/IP) are
implemented in the kernel

Although other media are supported (e.g. radio,
infra-red), links are usually across:

Ethernet

Serial Line (Point-to-point)

Proprietory file/print serving protocols supported:

Appletalk

DECNET

IPX / Novell Netware

SMB / CIFS (MS Windows/NT)

OSSI — Overview of Linux — ver. 1.0 – p. 24/27

TCP/IP

A suite of Internet-standard protocols and apps for
managing data transfers

Depicted as a ‘stack’

hardware and transport control protocols at the
bottom

user applications (e.g. browsers) at the top

Client-server apps provide facilities for:

Remote login

File transfer

Resource sharing (e.g. expensive peripherals)

Remote command execution

Email (internet/intranet/extranet)

Web browsing

OSSI — Overview of Linux — ver. 1.0 – p. 25/27

Documentation

Copious, but fragmented and/or duplicated

Programmer’s Manual /usr/man The classic ‘man pages’, first stop for skilled users, worth learning

info pages hypertext browsable texts, often identical or updated versions of man

pages

/usr/share/doc/program-name ascii/html docs installed with the named program

Howtos Tutorials on Linux-related topics, available on-line if installed (usually

in /usr/share/doc)

www Recently-released programs are usually documented on authorised

web sites, many (including older tools) are documented by

third-party sites

Table 2: Sources of Linux Documentation

Linux man pages divided into sections:
OSSI — Overview of Linux — ver. 1.0 – p. 26/27

Using the man pages (On-Line Manual)

Use man to see man pages on a named command, e.g

$ man date

The result should be something like:

DATE(1) FSF DATE(1)

NAME

date - print or set the system date and time

SYNOPSIS

date [OPTION]... [+FORMAT]

date [-u|--utc|--universal] [MMDDhhmm[[CC]YY][.ss]]

DATE(1) Shows page is in manual section 1

To view a page from a certain section use:
$ man -S section-number command-nameOSSI — Overview of Linux — ver. 1.0 – p. 27/27

	Objectives
	Generic Features of Unix
	Linux --- The Kernel of a System
	Fundamental Characteristics of Linux
	Multiuser Multitasking and Time-sharing
	Protected memory mode
	Multiple Filesystem Types
	The Many Faces of a GNU/Linux System
	The Filesystem
	Filenames
	Filename Extensions and File Types
	Hidden Filenames
	The Shell ({pgn bash})
	Key Features of the Bash Shell
	Interacting with a Linux `Terminal'
	Software Tools: The UNIX Philosophy
	Tasks/Processes
	Process Communication
	Re-directing I/O to and from Files
	Re-directing I/O to and from Files (continued)
	Pipes & Tools
	Linux as a Programming Environment
	Networking
	TCP/IP
	Documentation
	Using the {kwd man pages} (On-Line Manual)

