
OSSI — ver. 1.5 Processes - p. 1/112

Processes and Threads

What are processes?

How does the operating system manage them?

Nick Urbanik

nicku@nicku.org

A computing department

Copyright Conditions: Open Publication License

(see http://www.opencontent.org/openpub/)

http://www.opencontent.org/openpub/

Introduction

What is a process?

What is a process? — 2

What is a thread?

Program counter

Environment of a process

Permissions of a Process

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 2/112

What is a process?

■ A process is a program in execution

■ Each process has a process ID

■ In Linux,
$ ps ax

■ prints one line for each process.

■ A program can be executed a number of times
simultaneously.
◆ Each is a separate process.

Introduction

What is a process?

What is a process? — 2

What is a thread?

Program counter

Environment of a process

Permissions of a Process

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 3/112

What is a process? — 2

■ A process includes current values of:
◆ Program counter
◆ Registers
◆ Variables

■ A process also has:
◆ The program code
◆ It’s own address space, independent of other processes
◆ A user that owns it
◆ A group owner
◆ An environment and a command line

■ This information is stored in a process control block, or
task descriptor or process descriptor
◆ a data structure in the OS, in the process table
◆ See slides starting at §34.

Introduction

What is a process?

What is a process? — 2

What is a thread?

Program counter

Environment of a process

Permissions of a Process

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 4/112

What is a thread?

■ A thread is a lightweight process
◆ Takes less CPU power to start, stop

■ Part of a single process

■ Shares address space with other threads in the same
process

■ Threads can share data more easily than processes

■ Sharing data requires synchronisation, i.e., locking — see
slide 95.

■ This shared memory space can lead to complications in
programming:

“Threads often prevent abstraction. In order to prevent

deadlock. you often need to know how and if the library you

are using uses threads in order to avoid deadlock problems.

Similarly, the use of threads in a library could be affected by

the use of threads at the application layer.” – David Korn
See page 180, ESR in references, §112.

Introduction

What is a process?

What is a process? — 2

What is a thread?

Program counter

Environment of a process

Permissions of a Process

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 5/112

Program counter

■ The code of a process occupies memory

■ The Program counter (PC) is a CPU register

■ PC holds a memory address. . .

■ . . . of the next instruction to be fetched and executed

Introduction

What is a process?

What is a process? — 2

What is a thread?

Program counter

Environment of a process

Permissions of a Process

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 6/112

Environment of a process

■ The environment is a set of names and values

■ Examples:
PATH=/usr/bin:/bin:/usr/X11R6/bin

HOME=/home/nicku

SHELL=/bin/bash

■ In Linux shell, can see environment by typing:
$ set

Introduction

What is a process?

What is a process? — 2

What is a thread?

Program counter

Environment of a process

Permissions of a Process

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 7/112

Permissions of a Process

■ A process executes with the permissions of its owner
◆ The owner is the user that starts the process

■ A Linux process can execute with permissions of another
user or group

■ If it executes as the owner of the program instead of the
owner of the process, it is called set user ID

■ Similarly for set group ID programs

Introduction

Multitasking

Multitasking

Multitasking — 2

Multitasking — 3

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 8/112

Multitasking

■ Our lab PCs have one main CPU

◆ But multiprocessor machines are becoming increasingly
common

◆ Linux 2.6.x kernel scales to 16 CPUs

■ How execute many processes “at the same time”?

Introduction

Multitasking

Multitasking

Multitasking — 2

Multitasking — 3

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 9/112

Multitasking — 2

■ CPU rapidly switches between processes that are “ready
to run”

■ Really: only one process runs at a time

■ Change of process called a context switch
◆ See slide §36

■ With Linux: see how many context switches/second using
vmstat under “system” in column “cs”

Introduction

Multitasking

Multitasking

Multitasking — 2

Multitasking — 3

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 10/112

Multitasking — 3

■ This diagram shows how the scheduler gives a “turn” on
the CPU to each of four processes that are ready to run

time

A

D

B

C

process

context switches

CPU executes process

Introduction

Multitasking

Start of Process

Birth of a Process

Process tree

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 11/112

Birth of a Process

■ In Linux, a process is born from a fork() system call
◆ A system call is a function call to an operating system

service provided by the kernel

■ Each process has a parent

■ The parent process calls fork()

■ The child inherits (but cannot change) the parent
environment, open files

■ Child is identical to parent, except for return value of
fork().
◆ Parent gets child’s process ID (PID)
◆ Child gets 0

Introduction

Multitasking

Start of Process

Birth of a Process

Process tree

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 12/112

Process tree

■ Processes may have parents and children

■ Gives a family tree

■ In Linux, see this with commands:
$ pstree

or
$ ps axf

Introduction

Multitasking

Start of Process

Scheduler

Scheduler

When to Switch Processes?

Scheduling statistics: vmstat

Interrupts

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 13/112

Scheduler

■ OS decides when to run each process that is ready to run
(“runable”)

■ The part of OS that decides this is the scheduler

■ Scheduler aims to:
◆ Maximise CPU usage
◆ Maximise process completion
◆ Minimise process execution time
◆ Minimise waiting time for ready processes
◆ Minimise response time

Introduction

Multitasking

Start of Process

Scheduler

Scheduler

When to Switch Processes?

Scheduling statistics: vmstat

Interrupts

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 14/112

When to Switch Processes?

■ The scheduler may change a process between executing
(or running) and ready to run when any of these events
happen:
◆ clock interrupt
◆ I/O interrupt
◆ Memory fault
◆ trap caused by error or exception
◆ system call

■ See slide §17 showing the running and ready to run
process states.

Introduction

Multitasking

Start of Process

Scheduler

Scheduler

When to Switch Processes?

Scheduling statistics: vmstat

Interrupts

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 15/112

Scheduling statistics: vmstat

■ The “system” columns give statistics about scheduling:
◆ “cs” — number of context switches per second
◆ “in” — number of interrupts per second

■ See slide §36, man vmstat

Introduction

Multitasking

Start of Process

Scheduler

Scheduler

When to Switch Processes?

Scheduling statistics: vmstat

Interrupts

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 16/112

Interrupts

■ Will discuss interrupts in more detail when we cover I/O

■ An interrupt is an event (usually) caused by hardware that
causes:
◆ Saving some CPU registers
◆ Execution of interrupt handler
◆ Restoration of CPU registers

■ An opportunity for scheduling

Introduction

Multitasking

Start of Process

Scheduler

Process States

Process States

What is Most Common State?

Most Processes are Blocked

Linux Process States

Linux Process States — 2

Linux Process States — 3

Process States: vmstat

Tools for monitoring processes

Monitoring processes in Win

2000

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 17/112

Process States

Blocked

Running

Ready

input available

scheduler
chooses another

processscheduler
chooses
this process

waiting
for input

Introduction

Multitasking

Start of Process

Scheduler

Process States

Process States

What is Most Common State?

Most Processes are Blocked

Linux Process States

Linux Process States — 2

Linux Process States — 3

Process States: vmstat

Tools for monitoring processes

Monitoring processes in Win

2000

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 18/112

What is Most Common State?

■ Now, my computer has 160 processes.

■ How many are running, how many are ready to run, how
many are blocked?

■ What do you expect is most common state?

Introduction

Multitasking

Start of Process

Scheduler

Process States

Process States

What is Most Common State?

Most Processes are Blocked

Linux Process States

Linux Process States — 2

Linux Process States — 3

Process States: vmstat

Tools for monitoring processes

Monitoring processes in Win

2000

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 19/112

Most Processes are Blocked

9:41am up 44 days, 20:12, 1 user, load average: 2.02, 2.06, 2.13

160 processes: 145 sleeping, 2 running, 13 zombie, 0 stopped

■ Here you see that most are sleeping, waiting for input!

■ Most processes are “I/O bound”; they spend most time
waiting for input or waiting for output to complete

■ With one CPU, only one process can actually be running at
one time

■ However, surprisingly few processes are ready to run

■ The load average is the average number of processes that
are in the ready to run state.

■ In output from the top program above, see over last 60
seconds, there are 2.02 processes on average in RTR state

Introduction

Multitasking

Start of Process

Scheduler

Process States

Process States

What is Most Common State?

Most Processes are Blocked

Linux Process States

Linux Process States — 2

Linux Process States — 3

Process States: vmstat

Tools for monitoring processes

Monitoring processes in Win

2000

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 20/112

Linux Process States

running state

scheduling

uninterruptible

interruptible

stopped

zombie
creation

signal
or

event

event

executingready to run

wait
for event

Introduction

Multitasking

Start of Process

Scheduler

Process States

Process States

What is Most Common State?

Most Processes are Blocked

Linux Process States

Linux Process States — 2

Linux Process States — 3

Process States: vmstat

Tools for monitoring processes

Monitoring processes in Win

2000

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 21/112

Linux Process States — 2

■ Running — actually contains two states:
◆ executing, or
◆ ready to execute

■ Interruptable — a blocked state
◆ waiting for event, such as:

■ end of an I/O operation,
■ availability of a resource, or
■ a signal from another process

■ Uninterruptable — another blocked state
◆ waiting directly on hardware conditions
◆ will not accept any signals (even SIGKILL)

Introduction

Multitasking

Start of Process

Scheduler

Process States

Process States

What is Most Common State?

Most Processes are Blocked

Linux Process States

Linux Process States — 2

Linux Process States — 3

Process States: vmstat

Tools for monitoring processes

Monitoring processes in Win

2000

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 22/112

Linux Process States — 3

■ Stopped — process is halted
◆ can be restarted by another process
◆ e.g., a debugger can put a process into stopped state

■ Zombie — a process has terminated
◆ but parent did not wait() for it (see slide 65)

Introduction

Multitasking

Start of Process

Scheduler

Process States

Process States

What is Most Common State?

Most Processes are Blocked

Linux Process States

Linux Process States — 2

Linux Process States — 3

Process States: vmstat

Tools for monitoring processes

Monitoring processes in Win

2000

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 23/112

Process States: vmstat

■ The “procs” columns give info about process states:

■ “r” — number of processes that are in the ready to run
state

■ “b” — number of processes that are in the uninterruptable
blocked state

Introduction

Multitasking

Start of Process

Scheduler

Process States

Process States

What is Most Common State?

Most Processes are Blocked

Linux Process States

Linux Process States — 2

Linux Process States — 3

Process States: vmstat

Tools for monitoring processes

Monitoring processes in Win

2000

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 24/112

Tools for monitoring processes

■ Linux provides:

■ vmstat
◆ Good to monitor over time:
$ vmstat 5

■ procinfo
◆ Easier to understand than vmstat

◆ Monitor over time with
$ procinfo -f

■ View processes with top — see slides 27 to §30

■ The system monitor sar shows data collected over time:
See man sar; investigate sar -c and sar -q

■ See the utilities in the procps software package. You can
list them with
$ rpm -ql procps

ps

free

pgrep

pkill

pmap

skill

slabtop

snice

tload

top

uptime

vmstat

w

watch

Introduction

Multitasking

Start of Process

Scheduler

Process States

Process States

What is Most Common State?

Most Processes are Blocked

Linux Process States

Linux Process States — 2

Linux Process States — 3

Process States: vmstat

Tools for monitoring processes

Monitoring processes in Win

2000

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 25/112

Monitoring processes in Win 2000

■ Windows 2000 provides a tool:

■ Start → Administrative Tools → Performance.

■ Can use this to monitor various statistics

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Monitoring — top

load average

top: process states

top and memory

Virtual Memory: suspended

processes

Suspended Processes

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 26/112

Process Monitoring with top

OSSI — ver. 1.5 Processes - p. 27/112

Process Monitoring — top

08:12:13 up 1 day, 13:34, 8 users, load average: 0.16, 0.24, 0.49

111 processes: 109 sleeping, 1 running, 1 zombie, 0 stopped

CPU states: cpu user nice system irq softirq iowait idle

total 0.0% 0.0% 3.8% 0.0% 0.0% 0.0% 96.1%

Mem: 255608k av, 245064k used, 10544k free, 0k shrd, 17044k buff

152460k active, 63236k inactive

Swap: 1024120k av, 144800k used, 879320k free 122560k cached

PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND

1253 root 15 0 73996 13M 11108 S 2.9 5.5 19:09 0 X

1769 nicku 16 0 2352 1588 1488 S 1.9 0.6 2:10 0 magicdev

23548 nicku 16 0 1256 1256 916 R 1.9 0.4 0:00 0 top

1 root 16 0 496 468 440 S 0.0 0.1 0:05 0 init

2 root 15 0 0 0 0 SW 0.0 0.0 0:00 0 keventd

3 root 15 0 0 0 0 SW 0.0 0.0 0:00 0 kapmd

4 root 34 19 0 0 0 SWN 0.0 0.0 0:00 0 ksoftirqd/0

6 root 15 0 0 0 0 SW 0.0 0.0 0:00 0 bdflush

5 root 15 0 0 0 0 SW 0.0 0.0 0:11 0 kswapd

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Monitoring — top

load average

top: process states

top and memory

Virtual Memory: suspended

processes

Suspended Processes

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 28/112

top: load average

08:12:13 up 1 day, 13:34, 8 users, load average: 0.16, 0.24, 0.49

■ load average is measured over the last minute, five
minutes, fifteen minutes

■ Over that time is the average number of processes that are
ready to run, but which are not executing

■ A measure of how “busy” a computer is.

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Monitoring — top

load average

top: process states

top and memory

Virtual Memory: suspended

processes

Suspended Processes

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 29/112

top: process states

111 processes: 109 sleeping, 1 running, 1 zombie, 0 stopped

sleeping Most processes (109/111) are sleeping, waiting for
I/O

running This is the number of processes that are both ready
to run and are executing

zombie There is one process here that has terminated, but its
parent did not wait() for it.
■ The wait() system calls are made by a parent

process, to get the exit() status of its child(ren).

■ This call removes the process control block from the
process table, and the child process does not exist any
more. (§34)

stopped When you press
☛
✡

✟
✠Control-z in a shell, you will

increase this number by 1

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Monitoring — top

load average

top: process states

top and memory

Virtual Memory: suspended

processes

Suspended Processes

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 30/112

top: Processes and Memory

PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND

1253 root 15 0 73996 13M 11108 S 2.9 5.5 19:09 0 X

SIZE This column is the total size of the process, including
the part which is swapped (paged out) out to the swap
partition or swap file
Here we see that the process X uses a total of 73,996 Kb,
i.e., 73,996× 1024 bytes ≈ 72MB, where here 1MB = 220

bytes.

RSS The resident set size is the total amount of RAM that a
process uses, including memory shared with other
processes. Here X uses a total of 13MB RAM, including
RAM shared with other processes.

SHARE The amount of shared memory is the amount of RAM

that this process shares with other processes. Here X
shares 11,108 KB with other processes.

We can see that the total amount of RAM used exclusively by
one process is rss − share. Here we see that X uses about
13× 220 − 11,108× 210 ≈ 2MB

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Monitoring — top

load average

top: process states

top and memory

Virtual Memory: suspended

processes

Suspended Processes

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 31/112

Virtual Memory: suspended processes

■ With memory fully occupied by processes, could have all in
blocked state!

■ CPU could be completely idle, but other processes waiting
for RAM

■ Solution: virtual memory
◆ will discuss details of VM in memory management

lecture

■ Part or all of process may be saved to swap partition or
swap file

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Monitoring — top

load average

top: process states

top and memory

Virtual Memory: suspended

processes

Suspended Processes

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 32/112

Suspended Processes

■ Could add more states to process state table:
◆ ready and suspended
◆ blocked and suspended

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

OS Process Control Structures

What is in a PCB

Context Switch

Execution Context

Program Counter in PCB

PCB Example

PCB Example Diagram

PCB Example — Continued

Address of I/O instructions

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 33/112

Process Control Blocks

The Process Table

Data structure in OS to hold
information about a process

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

OS Process Control Structures

What is in a PCB

Context Switch

Execution Context

Program Counter in PCB

PCB Example

PCB Example Diagram

PCB Example — Continued

Address of I/O instructions

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 34/112

OS Process Control Structures

■ Every OS provides process tables to manage processes

■ In this table, the entries are called process control blocks
(PCBs), process descriptors or task descriptors. We will
use the abbreviation PCB.

■ There is one PCB for each process

■ in Linux, PCB is called task_struct, defined in
include/linux/sched.h

◆ In a Fedora Core or Red Hat system, you will find it in
the file
/usr/src/linux-2.*/include/linux/sched.h if
you have installed the kernel-source software
package

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

OS Process Control Structures

What is in a PCB

Context Switch

Execution Context

Program Counter in PCB

PCB Example

PCB Example Diagram

PCB Example — Continued

Address of I/O instructions

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 35/112

What is in a PCB

■ In slide §3, we saw that a PCB contains:
◆ a process ID (PID)
◆ process state (i.e., executing, ready to run, sleeping

waiting for input, stopped, zombie)
◆ program counter, the CPU register that holds the address

of the next instruction to be fetched and executed
◆ The value of other CPU registers the last time the

program was switched out of executing by a context
switch — see slide §36

◆ scheduling priority
◆ the user that owns the process
◆ the group that owns the process
◆ pointers to the parent process, and child processes
◆ Location of process’s data and program code in memory
◆ List of allocated resources (including open files)

■ PCB holds the values as they were when process was last
switched out of executing by a context switch — see
slide §36

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

OS Process Control Structures

What is in a PCB

Context Switch

Execution Context

Program Counter in PCB

PCB Example

PCB Example Diagram

PCB Example — Continued

Address of I/O instructions

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 36/112

Context Switch

■ OS does a context switch when:
◆ stop current process from executing, and
◆ start the next ready to run process executing on CPU

■ OS saves the execution context (see §37) to its PCB

■ OS loads the ready process’s execution context from its
PCB

■ When does a context switch occur?
◆ When a process blocks, i.e., goes to sleep, waiting for

input or output (I/O), or
◆ When the scheduler decides the process has had its

turn of the CPU, and it’s time to schedule another
ready-to-run process

■ A context switch must be as fast as possible, or
multitasking will be too slow
◆ Very fast in Linux OS

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

OS Process Control Structures

What is in a PCB

Context Switch

Execution Context

Program Counter in PCB

PCB Example

PCB Example Diagram

PCB Example — Continued

Address of I/O instructions

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 37/112

Execution Context

■ Also called state of the process (but since this term has
two meanings, we avoid that term here), process context or
just context

■ The execution context is all the data that the OS must save
to stop one process from executing on a CPU, and load to
start the next process running on a CPU

■ This includes the content of all the CPU registers, the
location of the code, . . .
◆ Includes most of the contents of the process’s PCB.

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

OS Process Control Structures

What is in a PCB

Context Switch

Execution Context

Program Counter in PCB

PCB Example

PCB Example Diagram

PCB Example — Continued

Address of I/O instructions

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 38/112

Program Counter in PCB

■ What value is in the program counter in the PCB?

■ If it is not executing on the CPU,
◆ The address of the next CPU instruction that will be

fetched and executed the next time the program starts
executing

■ If it is executing on the CPU,
◆ The address of the first CPU instruction that was fetched

and executed when the process began executing at the
last context switch (§36)

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

OS Process Control Structures

What is in a PCB

Context Switch

Execution Context

Program Counter in PCB

PCB Example

PCB Example Diagram

PCB Example — Continued

Address of I/O instructions

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 39/112

Process Control Blocks—Example

■ The diagram in slide §40 shows three processes and their
process control blocks.

■ There are seven snapshots t0, t1, t2, t3, t4, t5 and t6 at
which the scheduler has changed process (there has been
a context switch—§36)

■ On this particular example CPU, all I/O instructions are
2 bytes long

■ The diagram also shows the queue of processes in the:
◆ Ready queue (processes that are ready to run, but do

not have a CPU to execute on yet)
◆ Blocked, or Wait queue, where the processes have been

blocked because they are waiting for I/O to finish.

OSSI — ver. 1.5 Processes - p. 40/112

PCB Example: Diagram

P3 P2 P3

P1

PCB
for P1

PCB

PCB

for P2

for P3

Ready Queue:

Blocked Queue: P2

Running

Running

Running

Running

Running

Running

Ready

Ready

Blocked

Blocked

BlockedReady

Ready

P1 P2

Ready

Process 1 has terminated;
It’s PCB has been freed

Process 2 has terminated
PCB is freed

P3 has

PCB freed
exited;

Ready

P3

P3

0xCAFE

0xFACE 0xFACE 0xFEED 0xFEED 0xFEED

0xC0DE 0xC0DE 0xC0DE

0xDEAF 0xDEAF 0xDEAF 0xD1CE 0xD1CE 0xD1CE

time

CPU idle

t0 t1 t2 t3 t4 t5 t6

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

OS Process Control Structures

What is in a PCB

Context Switch

Execution Context

Program Counter in PCB

PCB Example

PCB Example Diagram

PCB Example — Continued

Address of I/O instructions

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 41/112

PCB Example — Continued

■ In slide §40,
◆ The times t0, t1, t2, t3, t4, t5 and t6 are when the

scheduler has selected another process to run.
◆ Note that these time intervals are not equal, they are just

the points at which a scheduling change has occurred.

■ Each process has stopped at one stage to perform I/O

◆ That is why each one is put on the wait queue once
during its execution.

■ Each process has performed I/O once

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

OS Process Control Structures

What is in a PCB

Context Switch

Execution Context

Program Counter in PCB

PCB Example

PCB Example Diagram

PCB Example — Continued

Address of I/O instructions

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 42/112

What is the address of I/O instructions?

■ We are given that all I/O instructions in this particular
example are two bytes long (slide §39)
◆ We can see that when the process is sleeping (i.e.,

blocked), then the program counter points to the
instruction after the I/O instruction

◆ So for process P1, which blocks with program counter
PC = C0DE16, the I/O instruction is at address
C0DE16 − 2 = C0DC16

◆ for process P2, which blocks with program counter
PC = FEED16, the I/O instruction is at address
FEED16 − 2 = FEEB16

◆ for process P3, which blocks with program counter
PC = D1CE16, the I/O instruction is at address
D1CE16 − 2 = D1CC16

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 43/112

Process System Calls

How the OS controls processes

How you use the OS to control
processe

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 44/112

Major process Control System Calls

■ fork() — start a new process

■ execve() — replace calling process with machine code
from another program file

■ wait(), waitpid() — parent process gets status of its’
child after the child has terminated, and cleans up the
process table entry for the child (stops it being a zombie)

■ exit() — terminate the current process

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 45/112

File I/O system calls: a sidetrack

#include <unistd.h>

ssize_t read(int filedes, void *buf,

size_t nbytes);

■ returns number of bytes read, 0 at end of file, −1 on error
ssize_t write(int filedes, void *buf,

size_t nbytes);

■ returns number of bytes written, else −1 on error

■ Note: these are unbuffered, that is, they have effect
“immediately”.

■ This is different from stdio.h functions, which are
buffered for efficiency.

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 46/112

Process IDs and init

■ Every process has a process ID (PID)

■ process 0 is the scheduler, part of kernel

■ process 1 is init, the parent of all other processes
◆ a normal user process, not part of kernel
◆ program file is /sbin/init

■ All other processes result from init calling the fork()

system call

■ This is the only way a new process is created by the kernel

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 47/112

SUID, SGID and IDs

■ Every process has six or more IDs associated with it

■ UID and GID of person who executes program file:
◆ real user ID, real group ID

■ IDs used to calculate permissions:
◆ Effective UID, Effective GID

■ IDs saved when use exec() system call:
◆ Saved set-user-ID, saved set-group-ID
◆ idea is can drop special privileges and return to

executing with real UID and real GID when privilege is no
longer required

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 48/112

Other system calls: getting process info

#include <sys/types.h>

#include <unistd.h>

■ pid_t getpid(void); returns PID of calling process

■ pid_t getppid(void); returns PID of parent

■ uid_t getuid(void); returns real user ID of process

■ uid_t geteuid(void); returns effective user ID of
process

■ gid_t getgid(void); returns real group ID of
process

■ gid_t getegid(void); returns effective group ID of
process

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 49/112

fork(): what it does

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

■ returns 0 in child

■ returns PID of child in parent

■ returns −1 if error

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 50/112

Using fork(): pseudocode

if ((pid = fork()) < 0)
fork_error has happened

else if (pid == 0) /∗ I am the child ∗/
do things the child process should do

else /∗ I am the parent ∗/
do things the parent should do

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 51/112

Simple fork() Example (no Checking)

#include <stdio.h>
#include <unistd.h>

int main()
{

int pid = fork();
printf("PID is %d\n", pid);
if (pid == 0)

printf("I’m the child\n");
else

printf("I’m the parent\n");
}

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 52/112

An example using fork()

#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

int glob = 6;

char buf[] = "a write to standard output\n";

int main(void)

{

int var = 88; /∗ local variable on the stack ∗/

pid_t pid;

if (write(STDOUT_FILENO, buf, sizeof (buf) − 1)

6= sizeof(buf) − 1) {

fprintf(stderr, "write error");

exit(1);

}

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 53/112

Example using fork()—(contd.)

printf("before fork\n");

if ((pid = fork()) < 0) {

fprintf(stderr, "fork error\n");

exit(1);

} else if (pid == 0) { /∗ child ∗/

++glob;

++var;

} else

sleep(2); /∗ parent ∗/

printf("pid = %d, glob = %d, var = %d\n",

getpid(), glob, var);

exit(0);

}

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 54/112

Output of fork-example.c:

$ gcc -o fork-example fork-example.c

$./fork-example

a write to standard output

before fork

pid = 7118, global = 7, var = 89 child’s vars changed

pid = 7117, global = 6, var = 88 parent’s copy not changed

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 55/112

Running fork-example again

$./fork-example > tmp.out

$ cat tmp.out

a write to standard output

before fork

pid = 7156, global = 7, var = 89

before fork

pid = 7155, global = 6, var = 88

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 56/112

Why two “before fork” messages?

■ write() system call not buffered

■ write() called before fork(), so one output

■ printf() is buffered
◆ line buffered if connected to terminal
◆ fully buffered otherwise; parent and child both have a

copy of the unwritten buffer when redirected

■ exit() causes both parent and child buffers to flush

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 57/112

So what does this show?

■ It shows that the child is an exact copy of the parent, with
all

■ variable values,

■ buffers,

■ open files,. . .

■ All are inherited by the child

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 58/112

Running another program — exec()

■ To run another program file

■ first call fork() to create a child process

■ child calls exec() to replace current copy of parent with a
totally new program in execution

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 59/112

execve() system call

#include <unistd.h>
int execve(const char ∗filename,

char ∗const argv[],
char ∗const envp[]);

■ executes the program filename, replaces current process

■ Passes the command line in argv[]

■ passes the environment variables in envp[]

■ Does not return, unless error, when returns with −1

■ Usually called through library exec*() calls — see man 3

exec

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 60/112

fork() — exec() Example

#include <stdio.h>

#include <unistd.h>

int main()

{

int pid = fork();

printf("PID is %d\n", pid);

if (pid == 0)

printf("I’m the child\n");

else

printf("I’m the parent\n");

}

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 61/112

Using execl()

int execl(const char *path,

const char *arg, ...);

■ Parameter number:
1. gives full path of the program file you want to execute

2. gives name of the new process

3. specifies the command line arguments you pass to the
program

4. last is a NULL pointer to end the parameter list.

■ We must always put a NULL pointer at the end of this list.

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 62/112

print.c: a program we call

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char ∗argv[])
{

// argv[0] is the program name
int num = atoi(argv[1]);
int loops = atoi(argv[2]);
int i;
for (i = 0; i < loops; ++i)

printf("%d ", num);

}

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 63/112

Calling ./print using execl()

#include <stdio.h>

#include <unistd.h>

int main()

{

printf("hello world\n");

int pid = fork();

printf("fork returned %d\n", pid);

if (pid == 0)

execl("./print", "print", "1", "100", NULL);

else

execl("./print", "print", "2", "100", NULL);

}

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 64/112

vfork() sytem call

■ A lightweight fork()

■ Designed for running execvp() straight after
◆ modern Linux fork() is very efficient when call
exec*()

■ Child does not contain an exact copy of parent address
space;

■ child calls exec() or exit() after fork()

■ parent is suspended till child calls fork() or exit()

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 65/112

wait(), waitpid() system calls

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status);

pid_t waitpid(pid_t pid,

int *status,

int options);

■ return process ID if OK, 0, or −1 on error

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

System Calls

File I/O system calls: a

sidetrack

init

SUID, SGID and IDs

Other system calls: getting

process info

fork(): what it does

Using fork(): pseudocode

Simple fork() Example (no

Checking)

An example using fork()

Example using

fork()—(contd.)

Output of fork-example.c:

Running fork-example again

Why two “before fork”

messages?

So what does this show?

Running another program —

exec()

execve() system call

fork() — exec() Example

Using execl()

print.c: a program we call

Calling ./print using

OSSI — ver. 1.5 Processes - p. 66/112

wait(), waitpid() system calls

■ wait() can block caller until child process terminates

■ waitpid() has option to prevent blocking

■ waitpid() can wait for a specific child instead of the first
child

■ if child has terminated already (it’s a zombie), wait returns
immediately, cleaning up the process table data structures
for the child

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

Part of Simple Shell Program

Windows and Processes

Windows and Processes — 2

CreateProcess() prototype

CreateProcess()

Example: CreateProcess()

Processes in Linux, Unix,

Windows

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 67/112

Part of Simple Shell Program

int main(int argc, char ∗∗argv)
{

char ∗prog_name = basename(∗argv);
print_prompt(prog_name);
read_command();
for (;;) {

int pid = fork();
if (pid == 0) {

execvp(args[0], args);
}
wait(NULL);
print_prompt(prog_name);
read_command();

}
}

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

Part of Simple Shell Program

Windows and Processes

Windows and Processes — 2

CreateProcess() prototype

CreateProcess()

Example: CreateProcess()

Processes in Linux, Unix,

Windows

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 68/112

Windows and Processes

■ Windows provides a Win32 API call to create a process:
CreateProcess()

■ Creates a new process, loads program into that process

■ CreateProcess() takes ten parameters

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

Part of Simple Shell Program

Windows and Processes

Windows and Processes — 2

CreateProcess() prototype

CreateProcess()

Example: CreateProcess()

Processes in Linux, Unix,

Windows

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 69/112

Windows and Processes — 2

■ Win32 uses handles for almost all objects such as files,
pipes, sockets, processes and events

■ handles can be inherited from parent

■ No proper parent-child relationship
◆ caller of CreateProcess() could be considered as

parent
◆ but child cannot determine it’s parent

OSSI — ver. 1.5 Processes - p. 70/112

CreateProcess() prototype

■ CreateProcess() is much more complicated than
pid_t fork(void);

■ Four of the parameters point to structs, e.g.,
◆ LPSTARTUPINFO points to a struct with 4 members
◆ LPPROCESS_INFORMATION points to a struct with 18 members!

BOOL CreateProcess (

LPCTSTR lpApplicationName, // pointer to executable module

LPTSTR lpCommandLine, // pointer to command line string

LPSECURITY_ATTRIBUTES lpProcessAttrib, // process security

LPSECURITY_ATTRIBUTES lpThreadAttrib, // thread security

BOOL bInheritHandles, // handle inheritance flag

DWORD dwCreationFlags, // creation flags

LPVOID lpEnvironment, // pointer to new environment block

LPCTSTR lpCurrentDirectory, // pointer to current dir name

LPSTARTUPINFO lpStartupInfo, // pointer to STARTUPINFO

LPPROCESS_INFORMATION lpProcessInformation // pointer to

// PROCESS_INFORMATION

);

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

Part of Simple Shell Program

Windows and Processes

Windows and Processes — 2

CreateProcess() prototype

CreateProcess()

Example: CreateProcess()

Processes in Linux, Unix,

Windows

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 71/112

CreateProcess()

■ Can Specify Program in either 1st or 2nd parameter:
◆ first: location of program to execute
◆ second: command line to execute

■ Creation flags:
◆ if 0, runs in existing window

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

Part of Simple Shell Program

Windows and Processes

Windows and Processes — 2

CreateProcess() prototype

CreateProcess()

Example: CreateProcess()

Processes in Linux, Unix,

Windows

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 72/112

Example: CreateProcess()

#include <windows.h>

#include <stdio.h>

void main() {

STARTUPINFO si;

PROCESS_INFORMATION pi;

memset(&si, 0, sizeof(si));

si.cb = sizeof(si);

if (! CreateProcess(NULL,

"..\\..\\print\\Debug\\print.exe 5 100",

NULL, NULL, TRUE, 0, NULL, NULL, &si, &pi))

fprintf(stderr, "CreateProcess failed with %d\n", GetLastError());

WaitForSingleObject(pi.hProcess, INFINITE);

CloseHandle(pi.hProcess);

CloseHandle(pi.hThread);

}

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

Part of Simple Shell Program

Windows and Processes

Windows and Processes — 2

CreateProcess() prototype

CreateProcess()

Example: CreateProcess()

Processes in Linux, Unix,

Windows

IPC

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 73/112

Processes in Linux, Unix, Windows

■ Linux often provides 2 or more
processes per application

■ Example: apache web server
parent process watches for
connections, one child process
per client

■ Linux processes have much less
overhead than in Windows

■ fork() — exec() very efficient

■ POSIX threads are very efficient,
and faster than fork() —
exec()

■ Windows have one
process per
application, but often
2 or more threads

■ Windows
CreateProcess()

takes more time than
fork() — exec()

■ CreateThread()

takes very much less
time than
CreateProcess()

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Problem with Processes

Interprocess Communication

(IPC)

IPC — Shared Memory

IPC — Signals

Signals and the Shell

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 74/112

IPC

Inter Process Communication

How Processes can Talk to Each Other

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Problem with Processes

Interprocess Communication

(IPC)

IPC — Shared Memory

IPC — Signals

Signals and the Shell

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 75/112

Problem with Processes

■ Communication!

■ Processes cannot see the same variables

■ Must use Inter Process Communication (IPC)

■ IPC Techniques include:
◆ pipes, and named pipes (FIFOs)
◆ sockets
◆ messages and message queues
◆ shared memory regions

■ All have some overhead

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Problem with Processes

Interprocess Communication

(IPC)

IPC — Shared Memory

IPC — Signals

Signals and the Shell

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 76/112

Interprocess Communication (IPC)

■ Pipe — circular buffer, can be written by one process, read
by another
◆ related processes can use unnamed pipes

■ used in shell programming, e.g., the vertical bar ‘|’ in
$ find /etc | xargs file

◆ unrelated processes can use named pipes —
sometimes called FIFOs

■ Messages — POSIX provides system calls msgsnd() and
msgrcv()

◆ message is block of text with a type
◆ each process has a message queue, like a mailbox
◆ processes are suspended when attempt to read from

empty queue, or write to full queue.

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Problem with Processes

Interprocess Communication

(IPC)

IPC — Shared Memory

IPC — Signals

Signals and the Shell

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 77/112

IPC — Shared Memory

■ Shared Memory — a Common block of memory shared by
many processes

■ Fastest way of communicating

■ Requires synchronisation (See slide 95)

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Problem with Processes

Interprocess Communication

(IPC)

IPC — Shared Memory

IPC — Signals

Signals and the Shell

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 78/112

IPC — Signals

■ Some signals can be generated from the keyboard, i.e.,☛
✡

✟
✠Control-C — interrupt (SIGINT);

☛
✡

✟
✠Control-\ — quit

(SIGQUIT),
☛
✡

✟
✠Control-Z — stop (SIGSTOP)

■ A process sends a signal to another process using the
kill() system call

■ signals are implemented as single bits in a field in the PCB,
so cannot be queued

■ A process may respond to a signal with:
◆ a default action (usually process terminates)
◆ a signal handler function (see trap in shell

programming notes), or
◆ ignore the signal (unless it is SIGKILL or SIGSTOP)

■ A process cannot ignore, or handle a SIGSTOP or a
SIGKILL signal.
◆ A KILL signal will always terminate a process (unless it

is in interruptible sleep)
◆ A SIGSTOP signal will always send a process into the

stopped state.

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Problem with Processes

Interprocess Communication

(IPC)

IPC — Shared Memory

IPC — Signals

Signals and the Shell

Threads

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 79/112

Signals and the Shell

■ We can use the kill built in command to make the
kill() system call to send a signal

■ A shell script uses the trap built in command to handle a
signal

■ Ignoring the signals SIGINT, SIGQUIT and SIGTERM:
trap "" INT QUIT TERM

■ Handling the same signals by printing a message then
exiting:
trap "echo ’Got a signal; exiting.’;exit 1" INT QUIT TERM

■ Handling the same signals with a function call:
signal_handler() {

echo "Received a signal; terminating."

rm -f $temp_file

exit 1

}

trap signal_handler INT QUIT TERM

■ Sending a SIGKILL signal to process with PID 3233:
$ kill -KILL 3233

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Threads and Processes

Threads have own. . .

Threads share a lot

Threads in Linux, Unix

hello.c: a simple threaded

program

Compile POSIX Threads

pthread_create()

pthread_create()

Problem with threads:

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 80/112

Threads

Lightweight processes that can talk to
each other easily

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Threads and Processes

Threads have own. . .

Threads share a lot

Threads in Linux, Unix

hello.c: a simple threaded

program

Compile POSIX Threads

pthread_create()

pthread_create()

Problem with threads:

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 81/112

Threads and Processes

■ Threads in a process
all share the same
address space

■ Communication easier

■ Overhead less

■ Problems of locking
and deadlock a major
issue

■ Processes have separate
address spaces

■ Communication more
indirect: IPC (Inter Process
Communication)

■ Overhead higher

■ Less problem with shared
resources (since fewer
resources to share!)

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Threads and Processes

Threads have own. . .

Threads share a lot

Threads in Linux, Unix

hello.c: a simple threaded

program

Compile POSIX Threads

pthread_create()

pthread_create()

Problem with threads:

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 82/112

Threads have own. . .

■ stack pointer

■ register values

■ scheduling properties, such as policy or priority

■ set of signals they can each block or receive

■ own stack data (local variables are local to thread)

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Threads and Processes

Threads have own. . .

Threads share a lot

Threads in Linux, Unix

hello.c: a simple threaded

program

Compile POSIX Threads

pthread_create()

pthread_create()

Problem with threads:

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 83/112

Threads share a lot

■ Changes made by one thread to shared system resources
(such as closing a file) will be seen by all other threads.

■ Two pointers having the same value point to the same data.

■ A number of threads can read and write to the same
memory locations, and so you need to explicitly
synchronise access

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Threads and Processes

Threads have own. . .

Threads share a lot

Threads in Linux, Unix

hello.c: a simple threaded

program

Compile POSIX Threads

pthread_create()

pthread_create()

Problem with threads:

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 84/112

Threads in Linux, Unix

■ POSIX is a standard for Unix

■ Linux implements POSIX threads

■ On Red Hat 8.x, documentation is at
$ info ’(libc) POSIX Threads’
◆ or in Emacs, C-H m libc then middle-click on POSIX

threads

■ Provides:
◆ semaphores,
◆ mutexes and
◆ condition variables
for locking (synchronisation)

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Threads and Processes

Threads have own. . .

Threads share a lot

Threads in Linux, Unix

hello.c: a simple threaded

program

Compile POSIX Threads

pthread_create()

pthread_create()

Problem with threads:

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 85/112

hello.c: a simple threaded program

#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

void ∗ print_hello(void ∗threadid)

{

printf("\n%d: Hello World!\n", threadid);

pthread_exit(NULL);

}

int main()

{

pthread_t threads[NUM_THREADS];

int rc, t;

for (t = 0; t < NUM_THREADS; t++) {

printf("Creating thread %d\n", t);

rc = pthread_create(&threads[t], NULL, print_hello, (void ∗) t);

if (rc) { printf("ERROR; pthread create() returned %d\n", rc);

exit(−1);

}

}

pthread_exit(NULL);

}

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Threads and Processes

Threads have own. . .

Threads share a lot

Threads in Linux, Unix

hello.c: a simple threaded

program

Compile POSIX Threads

pthread_create()

pthread_create()

Problem with threads:

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 86/112

How to Compile a POSIX Threads Program

■ Need to use the libpthread library
◆ Specify this with the option -lpthread

■ Need to tell the other libraries that they should be reentrant
(or “thread safe”)
◆ This means that the library uses no static variables that

may be overwritten by another thread
◆ Specify this with the option -D_REENTRANT

■ So, to compile the program 〈program〉.c, do:

$ gcc -D_REENTRANT -lpthread -o 〈program〉 〈program〉.c

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Threads and Processes

Threads have own. . .

Threads share a lot

Threads in Linux, Unix

hello.c: a simple threaded

program

Compile POSIX Threads

pthread_create()

pthread_create()

Problem with threads:

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 87/112

pthread_create()

#include <pthread.h>

void *
pthread_create(pthread_t *thread,

pthread_attr_t *attr,

void *(*start_routine)(void *),

void *arg);

■ returns: 0 if successfully creates thread

■ returns error code otherwise

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Threads and Processes

Threads have own. . .

Threads share a lot

Threads in Linux, Unix

hello.c: a simple threaded

program

Compile POSIX Threads

pthread_create()

pthread_create()

Problem with threads:

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 88/112

pthread_create()

■ Quite different from fork()

■ Thread must always execute a user-defined function

■ parameters:
1. pointer to thread identifier

2. attributes for thread, including stack size

3. user function to execute

4. parameter passed to the user function

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Threads and Processes

Threads have own. . .

Threads share a lot

Threads in Linux, Unix

hello.c: a simple threaded

program

Compile POSIX Threads

pthread_create()

pthread_create()

Problem with threads:

Race Condition

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 89/112

Problem with threads:

■ Avoid 2 or more threads writing or reading and writing
same data at the same time

■ Avoid data corruption

■ Need to control access to data, devices, files

■ Need locking

■ Provide three methods of locking:
◆ mutex (mutual exclusion)
◆ semaphores
◆ condition variables

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Race Conditions

Critical Sections

Race Condition — one

possibility

Example — another possibility

Solution: Synchronisation

File Locking

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 90/112

Race Condition

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Race Conditions

Critical Sections

Race Condition — one

possibility

Example — another possibility

Solution: Synchronisation

File Locking

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 91/112

Race Conditions

■ race condition — where outcome of computation depends
on sheduling

■ an error in coding

■ Example: two threads both access same list with code like
this:

if (list.numitems > 0) {

// Oh, dear, better not change to

// other thread here!

remove_item(list); // not here!

// ...and not here either:

--list.numitems;

}

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Race Conditions

Critical Sections

Race Condition — one

possibility

Example — another possibility

Solution: Synchronisation

File Locking

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 92/112

Critical Sections

■ critical resource — a device, file or piece of data that
cannot be shared

■ critical section — part of program only one thread or
process should access contains a critical resource
◆ i.e., you lock data, not code

■ All the code in the previous slide is a critical section

■ Consider the code:
very_important_count++;

■ executed by two threads on a multiprocessor machine
(SMP = symmetric multiprocessor)

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Race Conditions

Critical Sections

Race Condition — one

possibility

Example — another possibility

Solution: Synchronisation

File Locking

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 93/112

Race Condition — one possibility

thread 1 thread 2

read very_important_count (5)

add 1 (6)

write very_important_count (6)

read very_important_count (6)

add 1 (7)

write very_important_count (7)

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Race Conditions

Critical Sections

Race Condition — one

possibility

Example — another possibility

Solution: Synchronisation

File Locking

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 94/112

Example — another possibility

thread 1 thread 2

read very_important_count (5)

read very_important_count (5)

add 1 (6)

add 1 (6)

write very_important_count (6)

write very_important_count (6)

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Race Conditions

Critical Sections

Race Condition — one

possibility

Example — another possibility

Solution: Synchronisation

File Locking

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 95/112

Solution: Synchronisation

■ Solution is to recognise critical sections

■ use synchronisation, i.e., locking, to make sure only one
thread or process can enter critical region at one time.

■ Methods of synchronisation include:
◆ file locking
◆ semaphores
◆ monitors
◆ spinlocks
◆ mutexes

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Race Conditions

Critical Sections

Race Condition — one

possibility

Example — another possibility

Solution: Synchronisation

File Locking

Synchronisation

Summary and References

OSSI — ver. 1.5 Processes - p. 96/112

File Locking

■ For example, an flock() system call can be used to
provide exclusive access to an open file

■ The call is atomic
◆ It either:

■ completely succeeds in locking access to the file, or
■ it fails to lock access to the file, because another

thread or process holds the lock
■ No “half-locked” state

◆ No race condition

■ Alternatives can result in race conditions; for example:
◆ thread/process 1 checks lockfile
◆ thread/process 2 checks lockfile a very short time later
◆ both processes think they have exclusive write access to

the file
◆ file is corrupted by two threads/processes writing to it at

the same time

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Synchronisation

Semaphores

Semaphores — 2

POSIX and Win32

Threads Example 1

Threads Example 2

Threads Example 3

Condition Variables

Monitors

Spinlocks

Summary and References

OSSI — ver. 1.5 Processes - p. 97/112

Methods of Synchronisation

What is it?

mutex, semaphore, condition variables,
monitor, spinlock

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Synchronisation

Semaphores

Semaphores — 2

POSIX and Win32

Threads Example 1

Threads Example 2

Threads Example 3

Condition Variables

Monitors

Spinlocks

Summary and References

OSSI — ver. 1.5 Processes - p. 98/112

Synchronisation

■ Synchronisation is a facility that enforces
◆ mutual exclusion and
◆ event ordering

■ Required when multiple active processes or threads can
access shared address spaces or shared I/O resources

■ even more critical for SMP (Symmetric Multiprocessor)
systems
◆ kernel can run on any processor
◆ all processors are of equal importance (there is no one

CPU that is the “boss”)
◆ SMP systems include PCs with more than one CPU, as

you might find in the Golden Shopping Centre

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Synchronisation

Semaphores

Semaphores — 2

POSIX and Win32

Threads Example 1

Threads Example 2

Threads Example 3

Condition Variables

Monitors

Spinlocks

Summary and References

OSSI — ver. 1.5 Processes - p. 99/112

Semaphores

■ A variable with three opererations:
◆ initialise to non-negative value
◆ down (or wait) operation:

■ decrement variable
■ if variable becomes negative, then process or thread

executing the down operation is blocked
■ has nothing to do with the wait system call for a

parent process to get status of its child
◆ up (or signal) operation:

■ increment the semaphore variable;
■ if value is not positive, then a process or thread

blocked by a down operation is unblocked.

■ A semaphore also has a queue to hold processes or
threads waiting on the semaphore.

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Synchronisation

Semaphores

Semaphores — 2

POSIX and Win32

Threads Example 1

Threads Example 2

Threads Example 3

Condition Variables

Monitors

Spinlocks

Summary and References

OSSI — ver. 1.5 Processes - p. 100/112

Semaphores — 2

■ The up and down semaphore operations are atomic
◆ the up and down operations cannot be interrupted
◆ each routine is a single, indivisible step

■ Using semaphores—pseudocode

/∗ only one process can enter critical section at one time: ∗/
semaphore s = 1;

down(s);

/∗ critical section ∗/
up(s);

■ Initialise semaphore to number of processes allowed into
critical section at one time

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Synchronisation

Semaphores

Semaphores — 2

POSIX and Win32

Threads Example 1

Threads Example 2

Threads Example 3

Condition Variables

Monitors

Spinlocks

Summary and References

OSSI — ver. 1.5 Processes - p. 101/112

Mutex—POSIX and Win32 Threads

■ mutual exclusion

■ Easier to use than semaphores (see slide 99)

■ When only one thread or process needs to write to a
resource
◆ all other writers refused access

■ A special form of the more general semaphore
◆ Can have only two values;
◆ sometimes called binary semaphores.

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Synchronisation

Semaphores

Semaphores — 2

POSIX and Win32

Threads Example 1

Threads Example 2

Threads Example 3

Condition Variables

Monitors

Spinlocks

Summary and References

OSSI — ver. 1.5 Processes - p. 102/112

mutex — POSIX Threads Example (1)

■ It is good practice to put the mutex together with the data it
proects

■ I have removed the error checking from this example to
save space—in real code, always check library calls for
error conditions

#include <pthread.h>
#include <stdio.h>

struct {
pthread_mutex_t mutex; /∗ protects access to value ∗/
int value; /∗ Access protected by mutex ∗/

} data = { PTHREAD_MUTEX_INITIALIZER, 0 };

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Synchronisation

Semaphores

Semaphores — 2

POSIX and Win32

Threads Example 1

Threads Example 2

Threads Example 3

Condition Variables

Monitors

Spinlocks

Summary and References

OSSI — ver. 1.5 Processes - p. 103/112

mutex — POSIX Threads Example (2)

#define NUM_THREADS 5

void ∗thread(void ∗t_id) {

int i;

for (i = 0; i < 200; ++i) {

pthread_mutex_lock(&data.mutex);

++data.value;

printf("thread %d: data value = %d\n",

t_id, data.value);

pthread_mutex_unlock(&data.mutex);

}

pthread_exit(NULL);

}

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Synchronisation

Semaphores

Semaphores — 2

POSIX and Win32

Threads Example 1

Threads Example 2

Threads Example 3

Condition Variables

Monitors

Spinlocks

Summary and References

OSSI — ver. 1.5 Processes - p. 104/112

mutex — POSIX Threads Example (3)

int main() {

pthread_t threads[NUM_THREADS];

int rc, t;

for (t = 0; t < NUM_THREADS; t++) {

printf("Creating thread %d\n", t);

pthread_create(&threads[t], NULL, thread,

(void ∗) t);

}

pthread_exit(NULL);

}

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Synchronisation

Semaphores

Semaphores — 2

POSIX and Win32

Threads Example 1

Threads Example 2

Threads Example 3

Condition Variables

Monitors

Spinlocks

Summary and References

OSSI — ver. 1.5 Processes - p. 105/112

POSIX Condition Variables

■ Lets threads sleep till a condition about shared data is true

■ Basic operations:
◆ signal the condition (when condition is true)
◆ wait for the condition

■ suspend the thread till another thread signals the
condition

■ Always associated with a mutex

■ Very useful

■ Missing from Windows: See http:

//www.cs.wustl.edu/~schmidt/win32-cv-1.html

http://www.cs.wustl.edu/~schmidt/win32-cv-1.html

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Synchronisation

Semaphores

Semaphores — 2

POSIX and Win32

Threads Example 1

Threads Example 2

Threads Example 3

Condition Variables

Monitors

Spinlocks

Summary and References

OSSI — ver. 1.5 Processes - p. 106/112

Monitors

■ A higher level structure for synchronisation

■ Implemented in Java, and some libraries

■ main characteristics:
◆ data in monitor is accessible only to procedures in

monitor
◆ a process or thread enters monitor by executing one of

its procedures
◆ Only one process or thread may be executing in the

monitor at one time.

■ Can implement with mutexes and condition variables.

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Synchronisation

Semaphores

Semaphores — 2

POSIX and Win32

Threads Example 1

Threads Example 2

Threads Example 3

Condition Variables

Monitors

Spinlocks

Summary and References

OSSI — ver. 1.5 Processes - p. 107/112

Spinlocks

■ Used in operating system kernels in SMP systems

■ Linux uses kernel spinlocks only for SMP systems

■ a very simple single-holder lock

■ if can’t get the spinlock, you keep trying (spinning) until you
can.

■ Spinlocks are:
◆ very small and fast, and
◆ can be used anywhere

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

Summary — Process States,

Scheduling

Summary — Processes and

Threads

Summary — Synchronisation

References

OSSI — ver. 1.5 Processes - p. 108/112

Summary and References

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

Summary — Process States,

Scheduling

Summary — Processes and

Threads

Summary — Synchronisation

References

OSSI — ver. 1.5 Processes - p. 109/112

Summary — Process States, Scheduling

■ Scheduler changes processes between ready to run and
running states
◆ context switch: when scheduler changes process or

thread

■ Most processes are blocked, i.e., sleeping: waiting for I/O

◆ understand the process states
◆ why a process moves from one state to another

■ Communication between processes is not trivial; IPC

methods include

◆ pipes
◆ messages

◆ shared memory
◆ signals
◆ semaphores

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

Summary — Process States,

Scheduling

Summary — Processes and

Threads

Summary — Synchronisation

References

OSSI — ver. 1.5 Processes - p. 110/112

Summary — Processes and Threads

■ With Linux and Unix, main process system calls are
fork(), exec() and wait() — understand the function
of each of these

■ Windows provides CreateProcess() and various
WaitFor...() Win32 API calls
◆ The WaitFor...() calls have a purpose similar to that

of the wait() system call in Linux and Unix

■ Threads are lightweight processes
◆ part of one process
◆ share address space
◆ can share data easily
◆ sharing data requires synchronisation, i.e., locking

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

Summary — Process States,

Scheduling

Summary — Processes and

Threads

Summary — Synchronisation

References

OSSI — ver. 1.5 Processes - p. 111/112

Summary — Synchronisation

■ When two threads of execution can both write to same
data or I/O,
◆ Need enforce discipline
◆ Use synchronisation

■ We looked at the following methods of synchronisation:
◆ semaphore
◆ mutex
◆ condition variable
◆ monitor
◆ spinlock

■ There are other methods we have not examined here.

Introduction

Multitasking

Start of Process

Scheduler

Process States

top

Process Control Blocks

System Calls

A shell program

IPC

Threads

Race Condition

Synchronisation

Summary and References

Summary — Process States,

Scheduling

Summary — Processes and

Threads

Summary — Synchronisation

References

OSSI — ver. 1.5 Processes - p. 112/112

References

There are many good sources of information in the library and on the Web about processes and

threads. Here are some I recommend:

■ A good online tutorial about POSIX threads: http:

//www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/MAIN.html

■ http://www.humanfactor.com/pthreads/ provides links to a lot of information about POSIX

threads

■ The best book about POSIX threads is Programming with POSIX Threads, David Butenhof,

Addison-Wesley, May 1997. Even though it was written so long ago, David wrote much of the

POSIX threads standard, so it really is the definitive work. It made me laugh, too!

■ Operating Systems: A Modern Perspective: Lab Update, 2nd Edition, Gary Nutt, Addison-Wesley,

2002. A nice text book that emphasises the practical (like I do!)

■ Microsoft MSDN provides details of Win32 API calls and provides examples of code.

■ William Stallings, Operating Systems, Fourth Edition, Prentice Hall, 2001, chapters 3, 4 and 5

■ Deitel, Deitel and Choffnes, Operating Systems, Third Edition, Prentice Hall, 2004, ISBN

0-13-1182827-4, chapters 3, 4 and 5

■ Paul Rusty Russell, Unreliable Guide To Locking http:

//kernelnewbies.org/documents/kdoc/kernel-locking/lklockingguide.html

■ W. Richard Stevens, Advanced Progamming in the UNIX Environment, Addison-Wesley, 1992

■ Eric S. Raymond, The Art of UNIX Programming, Addison-Wesley, 2004, ISBN 0-13-142901-9.

http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/MAIN.html
http://www.humanfactor.com/pthreads/
http://kernelnewbies.org/documents/kdoc/kernel-locking/lklockingguide.html

	Introduction
	What is a process?
	What is a process? — 2
	What is a thread?
	Program counter
	Environment of a process
	Permissions of a Process

	Multitasking
	Multitasking
	Multitasking — 2
	Multitasking — 3

	Start of Process
	Birth of a Process
	Process tree

	Scheduler
	Scheduler
	When to Switch Processes?
	Scheduling statistics: vmstat
	Interrupts

	Process States
	Process States
	What is Most Common State?
	Most Processes are Blocked
	Linux Process States
	Linux Process States — 2
	Linux Process States — 3
	Process States: vmstat
	Tools for monitoring processes
	Monitoring processes in Win 2000

	top
	Process Monitoring — top
	load average
	top: process states
	top and memory
	Virtual Memory: suspended processes
	Suspended Processes

	Process Control Blocks
	OS Process Control Structures
	What is in a PCB
	Context Switch
	Execution Context
	Program Counter in PCB
	PCB Example
	PCB Example Diagram
	PCB Example — Continued
	Address of I/O instructions

	System Calls
	System Calls
	File I/O system calls: a sidetrack
	init
	SUID, SGID and IDs
	Other system calls: getting process info
	fork(): what it does
	Using fork(): pseudocode
	Simple fork() Example (no Checking)
	An example using fork()
	Example using fork()—(contd.)
	Output of fork-example.c:
	Running fork-example again
	Why two ``before fork'' messages?
	So what does this show?
	Running another program — exec()
	execve() system call
	fork() — exec() Example
	Using execl()
	print.c: a program we call
	Calling ./print using execl()
	vfork() sytem call
	wait(), waitpid() system calls
	wait(), waitpid() system calls

	A shell program
	Part of Simple Shell Program
	Windows and Processes
	Windows and Processes — 2
	CreateProcess() prototype
	CreateProcess()
	Example: CreateProcess()
	Processes in Linux, Unix, Windows

	IPC
	Problem with Processes
	Interprocess Communication (IPC)
	IPC — Shared Memory
	IPC — Signals
	Signals and the Shell

	threads
	Threads and Processes
	Threads have own…
	Threads share a lot
	Threads in Linux, Unix
	hello.c: a simple threaded program
	Compile POSIX Threads
	pthread_create()
	pthread_create()
	Problem with threads:

	Race Condition
	Race Conditions
	Critical Sections
	Race Condition — one possibility
	Example — another possibility
	Solution: Synchronisation
	File Locking

	Synchronisation
	Synchronisation
	Semaphores
	Semaphores — 2
	POSIX and Win32
	Threads Example 1
	Threads Example 2
	Threads Example 3
	Condition Variables
	Monitors
	Spinlocks

	Summary and References
	Summary — Process States, Scheduling
	Summary — Processes and Threads
	Summary — Synchronisation
	References

