
OSSI — ver. 1.12 Shell Programming - p. 1/86

Shell Programming—an Introduction
Copyright Conditions: Open Publication License (see

http://www.opencontent.org/openpub/)

Nick Urbanik

nicku@nicku.org

A computing department

http://www.opencontent.org/openpub/

Intro

Aim

Why Shell Scripting?

Where to get more information

The Shell is an Interpreter

The Shebang

Making Executable

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 2/86

Aim

After successfully working through this exercise, You will:

■ write simple shell scripts using for, if, while, case, getopts

statements;

■ write shell script functions, and be able to handle parameters;

■ understand basic regular expressions, and be able to create your

own regular expressions;

■ understand how to execute and debug these scripts;

■ understand some simple shell scripts written by others.

Intro

Aim

Why Shell Scripting?

Where to get more information

The Shell is an Interpreter

The Shebang

Making Executable

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 3/86

Why Shell Scripting?

■ Basic startup, shutdown of Linux, Unix systems uses large
number of shell scripts
◆ understanding shell scripting important to understand

and perhaps modify behaviour of system

■ Very high level: powerful script can be very short

■ Can build, test script incrementally

■ Useful on the command line: “one liners”

Intro

Aim

Why Shell Scripting?

Where to get more information

The Shell is an Interpreter

The Shebang

Making Executable

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 4/86

Where to get more information

■ the Libarary has two copies of the book, Learning the Bash
Shell, second edition, by Cameron Newham & Bill
Rosenblatt, O’Reilly, 1998.

■ There is a free on-line book about shell programming at:
http://tldp.org/LDP/abs/html/index.html and
http://tldp.org/LDP/abs/abs-guide.pdf. It has
hundreds of pages, and is packed with examples.

■ The handy reference to shell programming is:
$ pinfo bash

or
$ man bash

■ IMPORTANT: bash provides simple on-line help for
all built-in commands, e.g.,
$ help let

http://tldp.org/LDP/abs/html/index.html
http://tldp.org/LDP/abs/abs-guide.pdf

Intro

Aim

Why Shell Scripting?

Where to get more information

The Shell is an Interpreter

The Shebang

Making Executable

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 5/86

The Shell is an Interpreter

■ Some languages are compiled: C, C++, Java,. . .

■ Some languages are interpreted: Java bytecode, Shell

■ Shell is an interpreter: kernel does not run shell program
directly:
◆ kernel runs the shell program /bin/sh with script file

name as a parameter
◆ the kernel cannot execute the shell script directly, as it

can a binary executable file that results from compiling a
C program

Intro

Aim

Why Shell Scripting?

Where to get more information

The Shell is an Interpreter

The Shebang

Making Executable

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 6/86

The Shebang

■ You ask the Linux kernel to execute the shell script

■ kernel reads first two characters of the executable file
◆ If first 2 chars are “#!” then
◆ kernel executes the name that follows, with the file name

of the script as a parameter

■ Example: a file called find.sh has this as the first line:
#! /bin/sh

■ then kernel executes this:
/bin/sh find.sh

■ What will happen in each case if an executable file begins
with:
◆ #! /bin/rm

◆ #! /bin/ls

Intro

Aim

Why Shell Scripting?

Where to get more information

The Shell is an Interpreter

The Shebang

Making Executable

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 7/86

Making the script executable

To easily execute a script, it should:
■ be on the PATH

■ have execute permission.
How to do each of these?
■ Red Hat Linux by default, includes the directory ∼/bin on

the PATH, so create this directory, and put your scripts
there:
$ mkdir ∼/bin

■ If your script is called script, then this command will
make it executable:
$ chmod +x script

Intro

Quoting and Funny Chars

Special Characters

Special Chars—2

Special Chars—3

Quoting

Quoting—2

Quoting—When to use it?

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 8/86

Special Characters

■ Many characters are special to the shell, and have a
particular meaning to the shell.

Character Meaning See slide

∼ Home directory § 7

‘ Command substitution. Better: $(...) § 24

Comment

$ Variable expression § 15

& Background Job 2.10 on page 41

* File name matching wildcard 2.18 on page 49

| Pipe 2.9 on page 40

Intro

Quoting and Funny Chars

Special Characters

Special Chars—2

Special Chars—3

Quoting

Quoting—2

Quoting—When to use it?

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 9/86

Special Characters—continued: 2

Character Meaning See slide

(Start subshell § 45, 17, 39

) End subshell § 45, 17, 39

[Start character set file name matching 2.9 on page 40

] End character set file name matching 2.9 on page 40

{ Start command block § 39

; Command separator § 40

\ Quote next character § 23

’ Strong quote § 23

" Weak quote § 23

Intro

Quoting and Funny Chars

Special Characters

Special Chars—2

Special Chars—3

Quoting

Quoting—2

Quoting—When to use it?

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 10/86

Special Characters—continued: 3

Character Meaning See slide

< Input redirect 2.7 on page 38

> Output redirect 2.6 on page 37

/ Pathname directory separator

? Single-character match in filenames 2.18 on page 49

! Pipline logical NOT § 28

〈space or tab〉 shell normally splits at white space §44

■ Note that references to pages in the tables above refer to the modules in

the workshop notes

Intro

Quoting and Funny Chars

Special Characters

Special Chars—2

Special Chars—3

Quoting

Quoting—2

Quoting—When to use it?

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 11/86

Quoting

■ Sometimes you want to use a special character literally ;
i.e., without its special meaning.

■ Called quoting

■ Suppose you want to print the string: 2 * 3 > 5 is a

valid inequality?

■ If you did this:
$ echo 2 * 3 > 5 is a valid inequality

the new file ‘5’ is created, containing the character ‘2’, then
the names of all the files in the current directory, then the
string “3 is a valid inequality”.

Intro

Quoting and Funny Chars

Special Characters

Special Chars—2

Special Chars—3

Quoting

Quoting—2

Quoting—When to use it?

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 12/86

Quoting—2

■ To make it work, you need to protect the special characters
‘*’ and ‘>’ from the shell by quoting them. There are three
methods of quoting:
◆ Using double quotes (“weak quotes”)
◆ Using single quotes (“strong quotes”)
◆ Using a backslash in front of each special character you

want to quote

■ This example shows all three:
$ echo "2 * 3 > 5 is a valid inequality"

$ echo ’2 * 3 > 5 is a valid inequality’

$ echo 2 * 3 \> 5 is a valid inequality

Intro

Quoting and Funny Chars

Special Characters

Special Chars—2

Special Chars—3

Quoting

Quoting—2

Quoting—When to use it?

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 13/86

Quoting—When to use it?

■ Use quoting when you want to pass special characters to
another program.

■ Examples of programs that often use special characters:
◆ find, locate, grep, expr, sed and echo

■ Here are examples where quoting is required for the
program to work properly:
$ find . -name *.jpg

$ locate ’/usr/bin/c*’

$ grep ’main.*(’ *.c

$ i=$(expr i * 5)

Intro

Quoting and Funny Chars

Variables

True and False

Variables—1

Variables—Assignments

Variables—Local to Script

Variables—Unsetting Them

Command-line Parameters

Special Built-in Variables

Variables: use Braces ${...}

After $9

More about Quoting

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

findOSSI — ver. 1.12 Shell Programming - p. 14/86

True and False

■ Shell programs depend on executing external programs

■ When any external program execution is successful, the
exit status is zero, 0

■ An error results in a non-zero error code

■ To match this, in shell programming:
◆ The value 0 is true
◆ any non-zero value is false

■ This is opposite from other programming languages

Intro

Quoting and Funny Chars

Variables

True and False

Variables—1

Variables—Assignments

Variables—Local to Script

Variables—Unsetting Them

Command-line Parameters

Special Built-in Variables

Variables: use Braces ${...}

After $9

More about Quoting

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

findOSSI — ver. 1.12 Shell Programming - p. 15/86

Variables—1

■ Variables not declared; they just appear when assigned to

■ Assignment:
◆ no dollar sign
◆ no space around equals sign
◆ examples:
$ x=10 # correct

$ x = 10 # wrong: try to execute program called ‘‘x’’

■ Read value of variable:
◆ put a ‘$’ in front of variable name
◆ example:
$ echo "The value of x is $x"

Intro

Quoting and Funny Chars

Variables

True and False

Variables—1

Variables—Assignments

Variables—Local to Script

Variables—Unsetting Them

Command-line Parameters

Special Built-in Variables

Variables: use Braces ${...}

After $9

More about Quoting

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

findOSSI — ver. 1.12 Shell Programming - p. 16/86

Variables—Assignments

■ You can put multiple assignments on one line:
i=0 j=10 k=100

■ You can set a variable temporarily while executing a
program:
$ echo $EDITOR

emacsclient

$ EDITOR=gedit crontab -e

$ echo $EDITOR

emacsclient

Intro

Quoting and Funny Chars

Variables

True and False

Variables—1

Variables—Assignments

Variables—Local to Script

Variables—Unsetting Them

Command-line Parameters

Special Built-in Variables

Variables: use Braces ${...}

After $9

More about Quoting

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

findOSSI — ver. 1.12 Shell Programming - p. 17/86

Variables—Local to Script

■ Variables disappear after a script finishes

■ Variables created in a sub shell disappear
◆ parent shell cannot read variables in a sub shell
◆ example:
$ cat variables

#! /bin/sh

echo $HOME

HOME=happy

echo $HOME

$./variables

/home/nicku

happy

$ echo $HOME

/home/nicku

Intro

Quoting and Funny Chars

Variables

True and False

Variables—1

Variables—Assignments

Variables—Local to Script

Variables—Unsetting Them

Command-line Parameters

Special Built-in Variables

Variables: use Braces ${...}

After $9

More about Quoting

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

findOSSI — ver. 1.12 Shell Programming - p. 18/86

Variables—Unsetting Them

■ You can make a variable hold the null string by assigning it
to nothing, but it does not disappear totally:
$ VAR=

$ set | grep ’ˆVAR’

VAR=

■ You can make it disappear totally using unset:
$ unset VAR

$ set | grep ’ˆVAR’

Intro

Quoting and Funny Chars

Variables

True and False

Variables—1

Variables—Assignments

Variables—Local to Script

Variables—Unsetting Them

Command-line Parameters

Special Built-in Variables

Variables: use Braces ${...}

After $9

More about Quoting

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

findOSSI — ver. 1.12 Shell Programming - p. 19/86

Command-line Parameters

■ Command-line parameters are called $0, $1, $2, . . .

■ Example: when call a shell script called “shell-script”
like this:
$ shell-script param1 param2 param3 param4

variable value

$0 shell-script

$1 param1

$2 param2

$3 param3

$4 param4

$# number of parameters to the program, e.g., 4

◆ Note: these variables are read-only.

Intro

Quoting and Funny Chars

Variables

True and False

Variables—1

Variables—Assignments

Variables—Local to Script

Variables—Unsetting Them

Command-line Parameters

Special Built-in Variables

Variables: use Braces ${...}

After $9

More about Quoting

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

findOSSI — ver. 1.12 Shell Programming - p. 20/86

Special Built-in Variables

■ Both $@ and $* are a list of all the parameters.

■ The only difference between them is when they are quoted
in quotes—see manual page for bash

■ $? is exit status of last command

■ $$ is the process ID of the current shell

■ Example shell script:
#! /bin/sh

echo $0 is the full name of this shell script

echo first parameter is $1

echo first parameter is $2

echo first parameter is $3

echo total number of parameters is $#

echo process ID is $$

Intro

Quoting and Funny Chars

Variables

True and False

Variables—1

Variables—Assignments

Variables—Local to Script

Variables—Unsetting Them

Command-line Parameters

Special Built-in Variables

Variables: use Braces ${...}

After $9

More about Quoting

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

findOSSI — ver. 1.12 Shell Programming - p. 21/86

Variables: use Braces ${...}

■ It’s good to put braces round a variable name when getting
its value

■ Then no problem to join its value with other text:
$ test=123

$ echo ${test}
123

No good, variable $test456 is undefined:

$ echo $test456

$ echo ${test}456
123456

Intro

Quoting and Funny Chars

Variables

True and False

Variables—1

Variables—Assignments

Variables—Local to Script

Variables—Unsetting Them

Command-line Parameters

Special Built-in Variables

Variables: use Braces ${...}

After $9

More about Quoting

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

findOSSI — ver. 1.12 Shell Programming - p. 22/86

Braces and Parameters after $9

■ Need braces to access parameters after $9:
$ cat paramten

#! /bin/sh

echo $10

echo ${10}
$./paramten a b c d e f g h i j

a0

j

■ Notice that $10 is the same as ${1}0, i.e., the first
parameter “a” then the literal character zero “0”

Intro

Quoting and Funny Chars

Variables

True and False

Variables—1

Variables—Assignments

Variables—Local to Script

Variables—Unsetting Them

Command-line Parameters

Special Built-in Variables

Variables: use Braces ${...}

After $9

More about Quoting

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

findOSSI — ver. 1.12 Shell Programming - p. 23/86

More about Quoting

■ Double quotes: "..." stop the special behaviour of all
special characters, except for:
◆ variable interpretation ($)
◆ backticks (‘) — see slide 24
◆ the backslash (\)

■ Single quotes ’...’:
◆ stop the special behaviour of all special characters

■ Backslash:
◆ preserves literal behaviour of character, except for

newline; see slides §29, §31, §35
◆ Putting “\” at the end of the line lets you continue a long

line on more than one physical line, but the shell will
treat it as if it were all on one line.

Intro

Quoting and Funny Chars

Variables

Command Substitution

Command Substitution

Example of Cmd Subst

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 24/86

Command Substitution — $(...) or ‘...‘

■ Enclose command in $(...) or backticks:‘...‘

■ Means, “Execute the command in the $(...) and put the
output back here.”

■ Here is an example using expr:
$ expr 3 + 2

5

$ i=expr 3 + 2 # error: try execute command ‘3’

$ i=$(expr 3 + 2) # correct

$ i=‘expr 3 + 2‘ # also correct

Intro

Quoting and Funny Chars

Variables

Command Substitution

Command Substitution

Example of Cmd Subst

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 25/86

Command Substitution—Example

■ We want to put the output of the command hostname into
a variable:
$ hostname

nickpc.tyict.vtc.edu.hk

$ h=hostname

$ echo $h

hostname

■ Oh dear, we only stored the name of the command, not the
output of the command!

■ Command substitution solves the problem:
$ h=$(hostname)

$ echo $h

nickpc.tyict.vtc.edu.hk

■ We put $(...) around the command. You can then
assign the output of the command.

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Comparing Strings

Comparing Integers

File Tests & NOT

AND OR Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 26/86

Conditions—String Comparisons

■ All programming languages depend on conditions for if
statements and for while loops

■ Shell programming uses a built-in command which is either
test or [...]

■ Examples of string comparisons:
["$USER" = root] # true if the value of $USER is "root"

["$USER" != root] # true if the value of $USER is not "root"

[-z "$USER"] # true if the string "$USER" has zero length

[string1 \< string2] # true if string1 sorts less than string2

[string1 \> string2] # true if string1 sorts greater than string2

■ Note that we need to quote the ‘>’ and the ‘<’ to avoid
interpreting them as file redirection.

■ Note: the spaces after the “[“ and before the “]” are
essential.

■ Also spaces are essential around operators

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Comparing Strings

Comparing Integers

File Tests & NOT

AND OR Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 27/86

Conditions—Integer Comparisons

■ Examples of numeric integer comparisons:

["$x" -eq 5] # true if the value of $x is 5

["$x" -ne 5] # true if integer $x is not 5

["$x" -lt 5] # true if integer $x is < 5

["$x" -gt 5] # true if integer $x is > 5

["$x" -le 5] # true if integer $x is ≤ 5

["$x" -ge 5] # true if integer $x is ≥ 5

■ Note again that the spaces after the “[“ and before the “]”
are essential.

■ Also spaces are essential around operators

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Comparing Strings

Comparing Integers

File Tests & NOT

AND OR Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 28/86

Conditions—File Tests, NOT Operator

■ The shell provides many tests of information about files.

■ Do man test to see the complete list.

■ Some examples:

$ [-f file] # true if file is an ordinary file

$ [! -f file] # true if file is NOT an ordinary file

$ [-d file] # true if file is a directory

$ [-u file] # true if file has SUID permission

$ [-g file] # true if file has SGID permission

$ [-x file] # true if file exists and is executable

$ [-r file] # true if file exists and is readable

$ [-w file] # true if file exists and is writeable

$ [file1 -nt file2] # true if file1 is newer than file2

■ Note again: the spaces after the “[“ and before the “]” are
essential.

■ Also spaces are essential around operators

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Comparing Strings

Comparing Integers

File Tests & NOT

AND OR Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 29/86

Conditions—Combining Comparisons

■ Examples of combining comparisons with AND: -a and
OR: -o, and grouping with \(...\)

true if the value of $x is 5 AND $USER is not equal to root:

["$x" -eq 5 -a "$USER" != root]

true if the value of $x is 5 OR $USER is not equal to root:

["$x" -eq 5 -o "$USER" != root]

true if (the value of $x is 5 OR $USER is not equal to root) AND

($y> 7 OR $HOME has the value happy)

[\("$x" -eq 5 -o "$USER" != root \) -a \

\("$y" -gt 7 -o "$HOME" = happy \)]

■ Note again that the spaces after the “[“ and before the “]”
are essential.

■ Do man test to see the information about all the
operators.

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Arithmetic Assignments

$((...))

((...))

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 30/86

Arithmetic Assignments

■ Can do with the external program expr

◆ . . . but expr is not so easy to use, although it is very standard and

portable: see man expr

◆ Easier is to use the built in let command

■ see help let

◆ Examples:

$ let x=1+4

$ let ++x # Now x is 6

$ let x=’1 + 4’

$ let ’x = 1 + 4’

$ let x="(2 + 3) * 5" # now x is 25

$ let "x = 2 + 3 * 5" # now x is 17

$ let "x += 5" # now x is 22

$ let "x = x + 5" # now x is 27; NOTE NO $

◆ Notice that you do not need to quote the special characters with let.

◆ Quote if you want to use white space.

◆ Do not put a dollar in front of variable, even on right side of

assignment; see last example.

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Arithmetic Assignments

$((...))

((...))

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 31/86

Arithmetic Expressions with $((...))

■ The shell interprets anything inside $((...)) as an
arithmetic expression

■ You could calculate the number of days left in the year like
this:
$ echo "There are \

$(((365-$(date +%j)) / 7)) weeks \

left till December 31"

■ No dollar sign in front of variables in these arithmetic
expressions.

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Arithmetic Assignments

$((...))

((...))

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 32/86

Arithmetic Conditions with ((...))

■ A (less portable) alternative to the arithmetic conditions in
slide 27 is putting the expression in ((...))

■ So you can do
(((3>2) && (4<=1)))

instead of
[\(3 -gt 2 \) -a \(4 -le 1 \)]

■ Operators that work with let, $((...)) and ((...))

include:
++ -- **
+ - * / % << >> & | ˜ ! ˆ

< > <= >= == !=

? :

which have exactly the same effect as in the C
programming language
◆ except exponentiation operator **, i.e.,
echo $((2**20)) prints the value of 220, i.e., 1048576

◆ For details, see
$ help let

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

if Statement

while Statement

for Statement

for Loops: Another Example

for ((; ;))

break and continue

Blocks: {...}

Flow Control: || &&

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 33/86

if Statement

■ Syntax:

if 〈test-commands〉

then

〈statements-if-test-commands-1-true〉

elif 〈test-commands-2〉

then

〈statements-if-test-commands-2-true〉

else

〈statements-if-all-test-commands-false〉

fi

■ Example:

if grep nick /etc/passwd > /dev/null 2>&1

then

echo Nick has a local account here

else

echo Nick has no local account here

fi

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

if Statement

while Statement

for Statement

for Loops: Another Example

for ((; ;))

break and continue

Blocks: {...}

Flow Control: || &&

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 34/86

while Statement

■ Syntax:

while 〈test-commands〉

do

〈loop-body-statements〉

done

■ Example:

i=0

while ["$i" -lt 10]

do

echo -n "$i " # -n suppresses newline.

let "i = i + 1" # i=$(expr $i + 1) also works

done

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

if Statement

while Statement

for Statement

for Loops: Another Example

for ((; ;))

break and continue

Blocks: {...}

Flow Control: || &&

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 35/86

for Statement

■ Syntax:
for 〈name〉 in 〈words〉
do

〈loop-body-statements〉
done

■ Example:
for planet in Mercury Venus Earth Mars \

Jupiter Saturn Uranus Neptune Pluto

do

echo $planet

done

◆ The backslash “\” quotes the newline. It’s just a way of
folding a long line in a shell script over two or more lines.

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

if Statement

while Statement

for Statement

for Loops: Another Example

for ((; ;))

break and continue

Blocks: {...}

Flow Control: || &&

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 36/86

for Loops: Another Example

■ Here the shell turns *.txt into a list of file names ending in

“.txt”:

for i in *.txt

do

echo $i

grep ’lost treasure’ $i

done

■ You can leave the in 〈words〉 out; in that case, 〈name〉 is set to

each parameter in turn:

i=0

for parameter

do

let ’i = i + 1’

echo "parameter $i is $parameter"

done

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

if Statement

while Statement

for Statement

for Loops: Another Example

for ((; ;))

break and continue

Blocks: {...}

Flow Control: || &&

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 37/86

for Loops: second, C-like syntax

■ There is a second (less frequently used, and less portable)

C-like for loop syntax:

for ((〈expr1〉 ; 〈expr2〉 ; 〈expr3〉))

do

〈loop-body-statements〉

done

■ Rules: same as for arithmetic conditions—see slide 32

■ Example:

for ((i = 0; i < 10; ++i))

do

echo $i

done

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

if Statement

while Statement

for Statement

for Loops: Another Example

for ((; ;))

break and continue

Blocks: {...}

Flow Control: || &&

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 38/86

break and continue

■ Use inside a loop

■ Work like they do in C

■ break terminates the innermost loop; execution goes on
after the loop

■ continue will skip the rest of the body of the loop, and
resume execution on the next itteration of the loop.

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

if Statement

while Statement

for Statement

for Loops: Another Example

for ((; ;))

break and continue

Blocks: {...}

Flow Control: || &&

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 39/86

Blocks: {...}

■ A subshell is one way of grouping commands together, but
it starts a new process, and any variable changes are
localised

■ An alternative is to group commands into a block,
enclosing a set of commands in braces: {...}

■ Useful for grouping commands for file input or output
◆ . . . though variables are not localised

■ See next slide for another application.

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

if Statement

while Statement

for Statement

for Loops: Another Example

for ((; ;))

break and continue

Blocks: {...}

Flow Control: || &&

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 40/86

Error Handling: ||, && and exit

■ Suppose we want the user to provide exactly two
parameters, and exit otherwise

■ A common method of handling this is something like:
[$# -eq 2] || { echo "Need two parameters"; exit 1; }

■ Read this as “the number of parameters is two OR exit”

■ Works because this logical OR uses short-circuit Boolean
evaluation; the second statement is executed only if the
first fails (is false)

■ Logical AND “&&” can be used in the same way; the
second statement will be executed only if the first is
successful (true)

■ A note about blocks: must have semicolon “;” or newline at
end of last statement before closing brace

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Output: echo and printf

Input: the read Command

Split with set

More about set, and IFS

Example: Changing IFS

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 41/86

Output: echo and printf

■ To perform output, use echo, or for more formatting,
printf.

■ Use echo -n to print no newline at end.

■ Just echo by itself prints a newline

■ printf works the same as in the C programming
language, except no parentheses or commas:
$ printf "%16s\t%8d\n" $my_string $my_number

■ Do man printf (or look it up in the bash manual page) to
read all about it.

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Output: echo and printf

Input: the read Command

Split with set

More about set, and IFS

Example: Changing IFS

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 42/86

Input: the read Command

■ For input, use the built-in shell command read

■ read reads standard input and puts the result into one or
more variables

■ If use one variable, variable holds the whole line

■ Syntax:
read 〈var1〉...

■ Often used with a while loop like this:
while read var1 var2

do

do something with $var1 and $var2

done

■ Loop terminates when reach end of file

■ To prompt and read a value from a user, you could do:
while [-z "$value"]; do

echo -n "Enter a value: "

read value

done

Now do something with $value

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Output: echo and printf

Input: the read Command

Split with set

More about set, and IFS

Example: Changing IFS

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 43/86

set: Splitting a Multi-Word Variable

■ Sometimes may want to split a multi-word variable into
single-word variables

■ read won’t work like this:
MY_FILE_INFO=$(ls -lR | grep $file)

...

echo $MY_FILE_INFO | read perms links \

user group size month day time filename

■ Use the builtin command set instead:
MY_FILE_INFO=$(ls -lR | grep $file)

...

set $MY_FILE_INFO

perms=$1 links=$2 user=$3 group=$4 size=$5

month=$6 day=$7 time=$8 filename=$9

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Output: echo and printf

Input: the read Command

Split with set

More about set, and IFS

Example: Changing IFS

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 44/86

More about set, and IFS

■ set splits its arguments into pieces (usually) at whitespace

■ It sets the first value as $1, the second as $2, and so on.

■ Note that you can change how set and the shell splits
things up by changing the value of a special variable called
IFS

■ IFS stands for Internal Field Separator

■ Normally the value of IFS is the string “〈space〉〈tab〉〈newline〉”

■ Next slide shows how changing IFS to a colon let us easily
split the PATH into separate directories: next slide

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Output: echo and printf

Input: the read Command

Split with set

More about set, and IFS

Example: Changing IFS

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 45/86

Example: Changing IFS

■ Notice that here, I make the change to IFS in a subshell. I
have simply typed the loop at the prompt.

■ As I said in slide 17, changes in a subshell are local to the
subshell:
$ echo $PATH

/usr/bin:/bin:/usr/X11R6/bin:/home/nicku/bin

$ (IFS=:

> for dir in $PATH

> do

> echo $dir

> done

>)

/usr/bin

/bin

/usr/X11R6/bin

/home/nicku/bin

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

case Statement

case Statement: Example

shift Up

shift: Many Places

Command-Line Options—1

Command-Line Options—2

Command-Line Options—3

getopts—4

getopts—5

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 46/86

case Statement

■ Similar to the switch statement in C, but more useful and
more general

■ Uses pattern matching against a string to decide on an
action to take

■ Syntax:
case 〈expression〉 in

〈pattern1〉)

〈statements〉 ;;

〈pattern2〉)

〈statements〉 ;;

...

esac

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

case Statement

case Statement: Example

shift Up

shift: Many Places

Command-Line Options—1

Command-Line Options—2

Command-Line Options—3

getopts—4

getopts—5

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 47/86

case Statement: Example

■ This example code runs the appropriate program on a
graphics file, depending on the file extension, to convert
the file to another format:

case $filename in

*.tif)

tifftopnm $filename > $ppmfile

;;

*.jpg)

tjpeg $filename > $ppmfile

;;

*)

echo -n "Sorry, cannot handle this "

echo "graphics format"

;;

esac

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

case Statement

case Statement: Example

shift Up

shift: Many Places

Command-Line Options—1

Command-Line Options—2

Command-Line Options—3

getopts—4

getopts—5

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 48/86

shift: Move all Parameters Up

■ Sometimes we want to process command-line parameters
in a loop

■ The shift statement is made for this

■ Say that we have four parameters:

parameter value parameter value

$1 one $3 three

$2 two $4 four

■ Then after executing the shift statement, the values are
now:

parameter value parameter value

$1 two $3 four

$2 three $4 no longer exists

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

case Statement

case Statement: Example

shift Up

shift: Many Places

Command-Line Options—1

Command-Line Options—2

Command-Line Options—3

getopts—4

getopts—5

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 49/86

shift: Many Places

■ You can give a number argument to shift:
◆ If before, we have four parameters:

parameter value parameter value

$1 one $3 three

$2 two $4 four

◆ After executing the statement:
$ shift 2

we have two parameters left:

parameter value parameter value

$1 three $3 no longer exists

$2 four $4 no longer exists

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

case Statement

case Statement: Example

shift Up

shift: Many Places

Command-Line Options—1

Command-Line Options—2

Command-Line Options—3

getopts—4

getopts—5

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 50/86

Command-Line Options—1

■ Sometimes we want to modify the behaviour of a shell
script
◆ For example, want an option to show more information

on request
◆ could use an option “-v” (for “verbose”) to tell the shell

script that we want it to tell us more information about
what it is doing

◆ If script is called showme, then we could use our -v
option like this:
$ showme -v

◆ the script then shows more information.

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

case Statement

case Statement: Example

shift Up

shift: Many Places

Command-Line Options—1

Command-Line Options—2

Command-Line Options—3

getopts—4

getopts—5

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 51/86

Command-Line Options—2

■ For example, We might provide an option to give a starting
point for a script to search for SUID programs

■ Could make the option -d 〈directory〉

■ If script is called findsuid, could call it like this:
$ findsuid -d /usr

to tell the script to start searching in the directory /usr
instead of the current directory

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

case Statement

case Statement: Example

shift Up

shift: Many Places

Command-Line Options—1

Command-Line Options—2

Command-Line Options—3

getopts—4

getopts—5

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 52/86

Command-Line Options—3

■ We could do this using shift, a while loop, and a case

statement, like this:
while [-n "$(echo $1 | grep ’-’)"]

do

case $1 in

-v) VERBOSE=1 ;;

-d)

shift

DIRECTORY=$1

;;

*) echo "usage: $0 [-v] [-d dir]"

exit 1 ;;

esac

shift

done

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

case Statement

case Statement: Example

shift Up

shift: Many Places

Command-Line Options—1

Command-Line Options—2

Command-Line Options—3

getopts—4

getopts—5

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 53/86

getopts: Command-Line Options—4

■ Problems with above solution: inflexibility:
◆ Does not allow options to be “bundled” together like
-abc instead of -a -b -c

◆ Requires a space between option and its argument, i.e.,
doesn’t let you do -d/etc as well as -d /etc

◆ Better method: use the built-in command getopts:
while getopts ":vd:" opt

do

case opt in

v) VERBOSE=1 ;;

d) DIRECTORY=$OPTARG ;;

*) echo "usage: $0 [-v] [-d dir]"

exit 1 ;;

esac

done

shift $((OPTIND - 1))

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

case Statement

case Statement: Example

shift Up

shift: Many Places

Command-Line Options—1

Command-Line Options—2

Command-Line Options—3

getopts—4

getopts—5

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 54/86

getopts: Command-Line Options—5

■ getopts takes two arguments:
◆ first comes the string that can contain letters and colons.

■ Each letter represents one option
■ A colon comes after a letter to indicate that option

takes an arguement, like -d directory

■ A colon at the beginning makes getopts less noisy,
so you can provide your own error message, as shown
in the example.

◆ The second is a variable that will hold the option (without
the hyphen “-”)

■ Shift out all processed options using the variable OPTIND,
leaving any other arguments accessible

■ Search for getopts in the bash man page

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Temporary Files: mktemp

Signals that Kill

Signals: trap

Signals: trap Example

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 55/86

Temporary Files: mktemp

■ Sometimes it is convenient to store temporary data in a
temporary file

■ The mktemp program is designed for this

■ We use it something like this:
TMPFILE=$(mktemp /tmp/temp.XXXXXX) || exit 1

■ mktemp will create a new file, replacing the “XXXXXX” with
a random string

■ Do man mktemp for the complete manual.

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Temporary Files: mktemp

Signals that Kill

Signals: trap

Signals: trap Example

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 56/86

Signals that may Terminate your Script

■ Many key strokes will send a signal to a process

■ Examples:

◆

☛
✡

✟
✠Control-C sends a SIGINT signal to the current

process running in the foreground

◆

☛
✡

✟
✠Control-\ sends a SIGQUIT signal

■ When you log out, all your processes are sent a SIGHUP

(hangup) signal

■ If your script is connected to another process that
terminates unexpectedly, it will receive a SIGPIPE signal

■ If anyone terminates the program with the kill program,
the default signal is SIGTERM

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Temporary Files: mktemp

Signals that Kill

Signals: trap

Signals: trap Example

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 57/86

Signals: trap

■ Sometimes you want your script to clean up after itself
nicely, and remove temporary files

■ Do this using trap

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Temporary Files: mktemp

Signals that Kill

Signals: trap

Signals: trap Example

Functions

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 58/86

Signals: trap Example

■ Supose your script creates some temporary files, and you
want to remove them if your script recieves any of these
signals

■ You can “catch” the signal, and remove the files when the
signals are received before the program terminates

■ Suppose the temporary files have names stored in the
variables TEMP1 and TEMP2

■ Then you would trap these signals like this:
trap "rm $TEMP1 $TEMP2" HUP INT QUIT PIPE TERM

■ Conveniently, (but not very portably), bash provides a
“pretend” signal called EXIT; can add this to the list of
signals you trap, so that the temporary files will be
removed when the program exits normally.

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Functions

Parameters in Functions

Example, Calling a Function

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 59/86

Functions

■ The shell supports functions and function calls

■ A function works like an external command, except that it
does not start another process

■ Syntax:
function 〈functname〉
{

〈shell commands〉
}
Or:
〈functname〉 ()

{
〈shell commands〉

}

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Functions

Parameters in Functions

Example, Calling a Function

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 60/86

Parameters in Functions

■ Work the same as parameters to entire shell script

■ First parameter is $1, second is $2,. . . , the tenth
parameter is ${10}, and so on.

■ $# is the number of parameters passed to the function

■ As with command line parameters, they are read-only

■ Assign to meaningful names to make your program more
understandable

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Functions

Parameters in Functions

Example, Calling a Function

Debugging

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 61/86

Example, Calling a Function

■ This is a simple example program:
#! /bin/sh

function cube {

echo $(($1 * $1 * $1))

}

j=$(cube 5)

echo $j # Output is 125

■ Note the use of command substitution to get a return value

■ The function prints result to standard output.

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Debugging Shell Scripts—1

Debugging Shell Scripts—2

Writing Shell Scripts

Useful External Programs—1

Useful External Programs—2

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 62/86

Debugging Shell Scripts—1

■ If you run the script with:
$ sh -v 〈script〉
then each statement will be printed as it is executed

■ If you run the script with:
$ sh -x 〈script〉
then an execution trace will show the value of all variables
as the script executes.

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Debugging Shell Scripts—1

Debugging Shell Scripts—2

Writing Shell Scripts

Useful External Programs—1

Useful External Programs—2

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 63/86

Debugging Shell Scripts—2

■ Use echo to display the value of variables as the program
executes

■ You can turn the -x shell option on in any part of your
script with the line:
set -x

and turn it off with:
set +x

◆ No, that’s not a typo: +x turns it off, -x turns it on.

■ The book Learning the bash Shell includes a bash shell
debugger if you get desperate

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Debugging Shell Scripts—1

Debugging Shell Scripts—2

Writing Shell Scripts

Useful External Programs—1

Useful External Programs—2

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 64/86

Writing Shell Scripts

■ Build your shell script incrementally:
◆ Open the editor in one window (and leave it open), have

a terminal window open in which to run your program as
you write it

◆ Test as you implement: this makes shell script
development easy

◆ Do not write a very complex script, and then begin
testing it!

■ Use the standard software engineering practice you know:
◆ Use meaningful variable names, function names
◆ Make your program self-documenting
◆ Add comment blocks to explain obscure or difficult parts

of your program

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Debugging Shell Scripts—1

Debugging Shell Scripts—2

Writing Shell Scripts

Useful External Programs—1

Useful External Programs—2

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 65/86

Useful External Programs—1

Each of these has a manual page, and many have info
manuals. Read their online documentation for more
information.
■ awk — powerful tool for processing columns of data

■ basename — remove directory and (optionally) extension
from file name

■ cat — copy to standard output

■ cut — process columns of data

■ du — show disk space used by directories and files

■ egrep, grep — find lines containing patterns in files

■ find — find files using many criteria

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Debugging Shell Scripts—1

Debugging Shell Scripts—2

Writing Shell Scripts

Useful External Programs—1

Useful External Programs—2

Regular Expressions

awk and sed

find

OSSI — ver. 1.12 Shell Programming - p. 66/86

Useful External Programs—2

■ last — show the last time a user was logged in

■ lastb — show last bad log in attempt by a user

■ rpm — RPM package manager: manage software package
database

■ sed — stream editor: edit files automatically

■ sort — sort lines of files by many different criteria

■ tr — translate one set of characters to another set

■ uniq — replace repeated lines with just one line,
optionally with a count of the number of repeated lines

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

Regular Expressions

What is In a RegEx?

Literal characters

Character Classes: [...]

[^...]

Match Any Character

Match Start or End

Repetitions

Matching Alternatives: “|”

Examples

awk and sed

findOSSI — ver. 1.12 Shell Programming - p. 67/86

Regular Expressions

■ Many programs and programming languages use regular
expressions, including Java 1.4 and later, Perl, VB.NET,
C# (and any language using the .NET Framework), PHP,
Python, Ruby, Tcl and MySQL (plus many others; even
MS Word uses regular expressions under
Edit → Find → More → Use wildcards)

■ These programs use regular expressions:
◆ grep, egrep, sed, awk

■ All programmer’s editors support regular expressions
(Emacs, vi, . . .)

■ Regular expressions provide a powerful language for
manipulating data and extracting important information
from masses of data

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

Regular Expressions

What is In a RegEx?

Literal characters

Character Classes: [...]

[^...]

Match Any Character

Match Start or End

Repetitions

Matching Alternatives: “|”

Examples

awk and sed

findOSSI — ver. 1.12 Shell Programming - p. 68/86

What is In a Regular Expression?

■ There are two types of character in a regular expression:
◆ Metacharacters

■ These include:
■ * \ . + ? ^ () [{ |

◆ Ordinary, literal characters:
■ i.e., all the other characters that are not

metacharacters

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

Regular Expressions

What is In a RegEx?

Literal characters

Character Classes: [...]

[^...]

Match Any Character

Match Start or End

Repetitions

Matching Alternatives: “|”

Examples

awk and sed

findOSSI — ver. 1.12 Shell Programming - p. 69/86

Literal characters

■ Find all lines containing "chan" in the password file:
$ grep chan /etc/passwd

■ The regular expression is "chan"

■ It is made entirely of literal characters

■ It matches only lines that contain the exact string

■ It will match lines containing the words chan, changed,
merchant, mechanism,. . .

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

Regular Expressions

What is In a RegEx?

Literal characters

Character Classes: [...]

[^...]

Match Any Character

Match Start or End

Repetitions

Matching Alternatives: “|”

Examples

awk and sed

findOSSI — ver. 1.12 Shell Programming - p. 70/86

Character Classes: [...]

■ A character class represents one character

■ Examples:
Find all words in the dictionary that contain a vowel:

$ grep "[aeiou]" /usr/share/dict/words

Find all lines that contain a digit:

$ grep "[0123456789]" /usr/share/dict/words

Find all lines that contain a digit:

$ grep "[0-9]" /usr/share/dict/words

Find all lines that contain a capital letter:

$ grep "[A-Z]" /usr/share/dict/words

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

Regular Expressions

What is In a RegEx?

Literal characters

Character Classes: [...]

[^...]

Match Any Character

Match Start or End

Repetitions

Matching Alternatives: “|”

Examples

awk and sed

findOSSI — ver. 1.12 Shell Programming - p. 71/86

Negated Character Classes: [^...]

■ Examples of negated character classes:

Find all words in the dictionary

that contain a character that is not a vowel:

$ grep "[ˆaeiou]" /usr/share/dict/words

Two ways of finding all lines that contain

a character that is not a digit:

$ grep "[ˆ0123456789]" /usr/share/dict/words

$ grep "[ˆ0-9]" /usr/share/dict/words

Find all lines that contain a character

that is not a digit, or a letter

$ grep "[ˆ0-9a-zA-Z]" /usr/share/dict/words

■ Remember: each set of square brackets represents
exactly one character.

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

Regular Expressions

What is In a RegEx?

Literal characters

Character Classes: [...]

[^...]

Match Any Character

Match Start or End

Repetitions

Matching Alternatives: “|”

Examples

awk and sed

findOSSI — ver. 1.12 Shell Programming - p. 72/86

Match Any Character

■ The dot “.” matches any single character, except a
newline.

■ The pattern ‘.....’ matches all lines that contain at least
five characters

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

Regular Expressions

What is In a RegEx?

Literal characters

Character Classes: [...]

[^...]

Match Any Character

Match Start or End

Repetitions

Matching Alternatives: “|”

Examples

awk and sed

findOSSI — ver. 1.12 Shell Programming - p. 73/86

Matching the Beginning or End of Line

■ To match a line that contains exactly five characters:
$ grep ’ˆ.....$’ /usr/share/dict/words

■ The hat, ˆ represents the position right at the start of the
line

■ The dollar $ represents the position right at the end of the
line.

■ Neither ˆ nor $ represents a character

■ They represent a position

■ Sometimes called anchors, since they anchor the other
characters to a specific part of the string

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

Regular Expressions

What is In a RegEx?

Literal characters

Character Classes: [...]

[^...]

Match Any Character

Match Start or End

Repetitions

Matching Alternatives: “|”

Examples

awk and sed

findOSSI — ver. 1.12 Shell Programming - p. 74/86

Match Repetitions: *, ?, +, {n}, {n,m}

■ To match zero or more:

■ a* represents zero or more of the lower case letter a, so
the pattern will match "" (the empty string), “a”, “aa”,
“aaaaaaaaaaaaaaa”, “qwewtrryu” or the “nothing” in
front of any string!

■ To match one or more:

■ ‘a+’ matches one or more “a”s

■ ‘a?’ matches zero or one “a”

■ ‘a{10}’ matches exactly 10 “a”s

■ ‘a{5,10}’ matches between 5 and 10 (inclusive) “a”s

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

Regular Expressions

What is In a RegEx?

Literal characters

Character Classes: [...]

[^...]

Match Any Character

Match Start or End

Repetitions

Matching Alternatives: “|”

Examples

awk and sed

findOSSI — ver. 1.12 Shell Programming - p. 75/86

Matching Alternatives: “|”

■ the vertical bar represents alternatives:

■ The regular expresssion ‘nick|albert|alex’ will match
either the string “nick” or the string “albert” or the string
“alex”

■ Note that the vertical bar has very low precedence:

■ the pattern ‘^fred|nurk’ matches “fred” only if it occurs
at the start of the line, while it will match “nurk” at any
position in the line

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

Regular Expressions

What is In a RegEx?

Literal characters

Character Classes: [...]

[^...]

Match Any Character

Match Start or End

Repetitions

Matching Alternatives: “|”

Examples

awk and sed

findOSSI — ver. 1.12 Shell Programming - p. 76/86

Putting it All Together: Examples

■ Find all words that contain at least three ‘a’s:
$ egrep ’a.*a.*a’ /usr/share/dict/words
◆ Why is this different from
$ egrep ’aaa’ /usr/share/dict/words

■ Find all words that begin in ‘a’ and finish in ‘z’, ignoring
case:
$ egrep -i ’ˆa.*z$’ /usr/share/dict/words
◆ How is this different from:
$ egrep -i ’ˆa.*z’ /usr/share/dict/words

■ Find all words that contain at least two vowels:

$ grep ’[aeiou].*[aeiou]’ /usr/share/dict/words

■ Find all words that contain exactly two vowels:
$ egrep \

’ˆ[ˆaeiou]*[aeiou][ˆaeiou]*[aeiou][ˆaeiou]*$’ \

/usr/share/dict/words

■ Find all lines that are empty, or contain only spaces:
$ grep ’ˆ *$’ file

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

Basic awk

What Does awk Do?

awk Examples

sed—the Stream Editor

sed—Backreferencees

Backrefs Example

find

OSSI — ver. 1.12 Shell Programming - p. 77/86

Basic awk

■ awk is a complete programming language

■ Mostly used for one-line solutions to problems of extracting
columns of data from text, and processing it

■ A complete book is available on awk; you can buy it here:
http://www.oreilly.com/catalog/awkprog3/ or

■ read it on your computer, as it is the official manual for
gawk (GNU awk); do
$ info gawk

or read it in Emacs.
◆ A printable postscript file of the book (353 pages) is on

my computer at
/usr/share/doc/gawk-3.1.3/gawk.ps

http://www.oreilly.com/catalog/awkprog3/

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

Basic awk

What Does awk Do?

awk Examples

sed—the Stream Editor

sed—Backreferencees

Backrefs Example

find

OSSI — ver. 1.12 Shell Programming - p. 78/86

What Does awk Do?

■ awk reads file(s) or standard input one line at a time, and

■ automatically splits the line into fields, and calls them $1,
$2,. . . , $NF

■ NF is equal to the number of fields the line was split into

■ $0 contains the whole line

■ awk has an option -F that allows you to select another
pattern as the field separator
◆ Normally awk splits columns by white space

■ To execute code after all lines are processed, create an
END block.

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

Basic awk

What Does awk Do?

awk Examples

sed—the Stream Editor

sed—Backreferencees

Backrefs Example

find

OSSI — ver. 1.12 Shell Programming - p. 79/86

awk Examples

■ Print the sizes of all files in current directory:
ls -l | awk ’{print $5}’

■ Add the sizes of all files in current directory:
ls -l | awk ’{sum += $5} END{print sum}’

■ Print only the permissions, user, group and file names of
files in current directory:
ls -l | awk ’{print $1, $3, $4, $NF}’

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

Basic awk

What Does awk Do?

awk Examples

sed—the Stream Editor

sed—Backreferencees

Backrefs Example

find

OSSI — ver. 1.12 Shell Programming - p. 80/86

sed—the Stream Editor

■ sed provides many facilities for editing files

■ The substitute command, s///, is the most important

■ The syntax (using sed as an editor of standard input), is:
$ sed ’s/〈original〉/〈replacement〉/’

■ Example: replace the first instance of Windows with Linux

on each line of the input:
sed ’s/Windows/Linux/’

■ Example: replace all instances of Windows with Linux on
each line of the input:
sed ’s/Windows/Linux/g’

◆ Note: by default, sed uses “basic regular expressions”,
which require a backslash ‘\’ in front of the
metacharacters ’{’, ‘(’, ‘)’, ‘|’, ‘+’ and ‘?’.

◆ To use “extended regular expressions” (which we
covered here), call sed with the option -r, as in this
example:
$ sed -r s/a+//

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

Basic awk

What Does awk Do?

awk Examples

sed—the Stream Editor

sed—Backreferencees

Backrefs Example

find

OSSI — ver. 1.12 Shell Programming - p. 81/86

sed—Backreferencees

■ You can match part of the 〈original〉 in a sed -r substitute
command, and put that part back into the replacement
part.

■ You enclose the part you want to refer to later in (...)

■ You can get the first value in the replacement part by \1,
the second opening parenthesis of (...) by \2, and so
on.

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

Basic awk

What Does awk Do?

awk Examples

sed—the Stream Editor

sed—Backreferencees

Backrefs Example

find

OSSI — ver. 1.12 Shell Programming - p. 82/86

sed—Backreferencees: Example

■ If you do
$ find /etc | xargs file -b

you will get a lot of output like this:
symbolic link to bg5ps.conf.zh_TW.Big5

symbolic link to rc.d/rc.local

symbolic link to rc.d/rc

symbolic link to rc.d/rc.sysinit

symbolic link to ../../X11/xdm/Xservers

■ If you want to edit each line to remove everything after
“symbolic link”, then you could pipe the data through
sed like this:
$ find /etc | xargs file -b \

| sed -r ’s/(symbolic link).*/\1/’

■ See slide 83 for an application

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

find Examples

Finding SUID Programs

Long find Example

rpm Queries

OSSI — ver. 1.12 Shell Programming - p. 83/86

find Examples

■ Count the number of unique manual pages on the
computer:
$ find /usr/share/man -type f | wc -l

■ Print a table of types of file under the /etc directory, with
the most common file type down at the bottom:
$ find /etc | xargs file -b \

| sed -r ’s/(symbolic link).*/\1/’ \

| sort \

| uniq -c \

| sort -n

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

find Examples

Finding SUID Programs

Long find Example

rpm Queries

OSSI — ver. 1.12 Shell Programming - p. 84/86

Finding SUID Programs

■ Finding SUID or SGID files:
$ sudo find / -type f \

\(perm -2000 -o -perm -4000 \) \

> files.secure

■ Let’s compare with a list of SUID and SGID files to see if
there are any changes, since SUID and SGID programs can
be a security risk:
$ sudo find / -type f \

\(perm -2000 -o -perm -4000 \) \

| diff - files.secure

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

find Examples

Finding SUID Programs

Long find Example

rpm Queries

OSSI — ver. 1.12 Shell Programming - p. 85/86

A find Example with Many Options

■ Set all directories to have the access mode 771, set all
backup files (*.BAK) to mode 600, all shell scripts (*.sh) to
mode 755, and all text files (*.txt) to mode 644:

$ find . \(-type d -a exec chmod 771 {} \; \) -o \

\(-name "*.BAK" -a exec chmod 600 {} \; \) -o \

\(-name "*.sh" -a exec chmod 755 {} \; \) -o \

\(-name "*.txt" -a exec chmod 644 {} \; \)

Intro

Quoting and Funny Chars

Variables

Command Substitution

Conditions

Arithmetic

Statements

Input & Output

Command-line Parameters

Temporary Files, Signals

Functions

Debugging

Regular Expressions

awk and sed

find

find Examples

Finding SUID Programs

Long find Example

rpm Queries

OSSI — ver. 1.12 Shell Programming - p. 86/86

rpm Database Query Commands

■ The rpm software package management system includes a
database with very detailed information about every file of
every software package that is installed on the computer.

■ You can query this database using the rpm command.

■ The manual page does not give the complete picture, but
there is a book called Maximum RPM that comes on the
Red Hat documentation CD

■ This package is installed on ictlab

■ You can see the appropriate section at this URL:
http://nicku.org/doc/maximum-rpm-1.0/html/s1-rpm-query-parts.html

http://nicku.org/doc/maximum-rpm-1.0/html/s1-rpm-query-parts.html

	Intro
	Aim
	Why Shell Scripting?
	Where to get more information
	The Shell is an Interpreter
	The Shebang
	Making the script executable

	Quoting and Funny Chars
	Special Characters
	Special Characters—continued: 2
	Special Characters—continued: 3
	Quoting
	Quoting—2
	Quoting—When to use it?

	Variables
	True and False
	Variables—1
	Variables—Assignments
	Variables—Local to Script
	Variables—Unsetting Them
	Command-line Parameters
	Special Built-in Variables
	Variables: use Braces ${…}
	Braces and Parameters after $9
	More about Quoting

	Command Substitution
	Command Substitution
	Command Substitution—Example

	Conditions
	Conditions—String Comparisons
	Conditions—Integer Comparisons
	Conditions—File Tests, NOT Operator
	Conditions—Combining Comparisons

	Arithmetic
	Arithmetic Assignments
	$((…))
	((…))

	Statements
	if Statement
	while Statement
	for Statement
	for Loops: Another Example
	for ((; ;))
	Blocks: {…}
	Flow Control: || &&

	Input & Output
	Output: echo and printf
	Input: the read Command
	Split with set
	More about set, and IFS
	Example: Changing IFS

	Command-line Parameters
	case Statement
	case Statement: Example
	shift Up
	shift: Many Places
	Command-Line Options—1
	Command-Line Options—2
	Command-Line Options—3
	getopts—4
	getopts: Command-Line Options—5

	Temporary Files, Signals
	Temporary Files: mktemp
	Signals that may Terminate your Script
	Signals: trap
	Signals: trap Example

	Functions
	Functions
	Parameters in Functions
	Example, Calling a Function

	Debugging
	Debugging Shell Scripts—1
	Debugging Shell Scripts—2
	Writing Shell Scripts
	Useful External Programs—1
	Useful External Programs—2

	Regular Expressions
	Regular Expressions
	What is In a Regular Expression?
	Literal characters
	Character Classes: […]
	Negated Character Classes: [^…]
	Match Any Character
	Matching the Beginning or End of Line
	Match Repetitions: *, ?, +, {n}, {n,m}
	Matching Alternatives: ``|''
	Putting it All Together: Examples

	awk and sed
	Basic awk
	What Does awk Do?
	awk Examples
	sed—the Stream Editor
	sed—Backreferencees
	sed—Backreferencees: Example

	find
	find Examples
	Finding SUID Programs
	A find Example with Many Options
	rpm Database Query Commands

