
Summary of the Subject

Nick Urbanik

nicku@nicku.org

A computing department

Copyright Conditions: Open Publication License

(see http://www.opencontent.org/openpub/)

Open Protocols and Open Standards

Open Standards do not limit access

• Data encoded in a proprietary format may be expensive to recover
far into the future

• Legal restrictions imposed by patents may require additional roy-
alties to be paid in addition to the costs of reverse-engineering.

• See the updated notes on Free Software and Open Standards.
OSSI — ver. 1.1 Summary of the Subject — slide 3

Operating System Types

Four Structures

• We covered four os structures:

◦ Monolithic

◦ Layered

◦ Microkernel

◦ Virtual Machine

Monolithic os: examples: Linux, some Unix systems. All kernel
code executes in the same address space—low communication
overhead

Layered Attempts to isolate parts of os from each other to make
the system more modular; has increased overhead of commu-
nication between the layers

Microkernel tries to make the os kernel as small as possible.
Overhead of communication between the many simple com-
ponents makes it hard for anyone to understand the system.

• Make sure you know what a system call and a trap are.
OSSI — ver. 1.1 Summary of the Subject — slide 5

http://www.opencontent.org/openpub/


Virtual Machine

• ibm sell many mainframes

◦ very large, reliable, expensive computers with high input,
output capability

◦ Run many virtual machines on the one physical machine

◦ Each virtual machine is isolated from the others, so virtual
machines can be set up on the one mainframe for two com-
panies that are competitors

– No company can directly find out what is on the other
virtual machines

◦ One mainframe can replace many smaller servers in a data
centre.

OSSI — ver. 1.1 Summary of the Subject — slide 6

Why mainframe better than servers?

• A company can choose whether to pay for a single mainframe or
a number of separate server machines to provide their network
services

• The mainframe may cost less than an equivalent number of indi-
vidual servers because:

◦ The load can be shared among all the virtual machines, and
the mainframe cpu can be used effectively

◦ Individual servers need to have enough cpu processing power
to meet peak demand, but normal traffic will be much less
than the peak.

◦ Because of this, the individual servers will have a lot of un-
used processing power.

◦ The mainframe will use much less floor space, and so save
money

◦ The mainframe will use much less electricity than the indi-
vidual servers

◦ The mainframe will use much less air conditioning power,
and save a lot of electricity.

OSSI — ver. 1.1 Summary of the Subject — slide 7

Shell Programming

Shell Programming

• Make sure you understand what you are doing in the shell assign-
ment.

• Understand how to use the keychain program with your assign-
ment.

• Note: I have updated the pages about keychain in the notes in
Module 13.

OSSI — ver. 1.1 Summary of the Subject — slide 9



POSIX Commands

POSIX

• posix is a standard, which defines a standard set of system calls,
a standard set of commands, and a standard shell programming
language.

• Linux aims to be compliant with the posix standards. Many Unix
systems are posix compliant.

OSSI — ver. 1.1 Summary of the Subject — slide 11

diff

• Often used like this:

$ diff -u 〈orignal file〉 〈new file〉

• Output of the diff command shows the differences between two
sets of files.

• Output is per line:

◦ if a line in 〈original file〉 is not in 〈new file〉, the output will
have a ‘-’ at the start of the line.

◦ if a line in 〈original file〉 is in 〈new file〉, but not 〈original
file〉, the output will have a ‘+’ at the start of the line.

◦ if a line has changed, even by one character, the line from
〈original file〉 will have a ‘-’ in the output, while the line
from 〈new file〉 will have a ‘+’.

◦ Two or so lines are shown around the changes, so that it is
easy to see where the change is. These context lines do not
have any a ‘+’ or ‘-’ in front, but a space ’ ’ instead.

OSSI — ver. 1.1 Summary of the Subject — slide 12

find, xargs

• These two tools often are used go together.

• Make sure you understand how xargs works.

find uses logic expressions to find files that match particular re-
quirements.

grep used to search for strings in files . . .

and also in standard output.
OSSI — ver. 1.1 Summary of the Subject — slide 13

Files and File Permissions

File Permissions and Symbolic Links

• Make sure that you have worked though and understood all the
problems in the Permissions Tutorial http://nicku.org/ossi/
lab/permissions/permissions.pdf

• We have covered permissions in more detail than in previous years,
and permissions are a vital topic in managing posix systems.

• We also spent some time studying symbolic links

◦ Make sure you understand clearly the difference between a
relative symbolic link and an absolute symbolic link

◦ Make sure you understand how to create them from any di-
rectory.

◦ Please study the handout about symbolic links http://

nicku.org/ossi/lab/sym-link/sym-link.pdf

OSSI — ver. 1.1 Summary of the Subject — slide 15

http://nicku.org/ossi/lab/permissions/permissions.pdf
http://nicku.org/ossi/lab/sym-link/sym-link.pdf


Processes

Processes and Threads

• Processes have a Process Control Block (pcb)

• A pcb is one entry in the process table

◦ In Linux, it is called task struct. Some people call it a task

descriptor

• A pcb holds a lot of information, including:

◦ The Process id, (pid), pid of parent (ppid)

◦ various User ids, (uids), group ids (gids)

◦ An environment (containing environment variables such as
PATH

◦ A copy of the cpu registers the last time the process was
suspended, including a copy of the program counter.

◦ The process state (see the two diagrams of process state)

◦ Address mapping details

◦ Resources held by the process, such as a list of files the pro-
cess has open

OSSI — ver. 1.1 Summary of the Subject — slide 17

Signals and IPC

How Processes can Talk to Each Other

Signals and IPC

• Processes cannot easily share information

• Need to use Inter Process Communication (ipc) for two processes
to share data.

• Examples:

◦ Pipes — you used in shell programming

◦ Sockets — over a network (e.g., for the Internet), and through
a socket file — the ssh-agent talks to ssh, scp and other
ssh clients through a socket

◦ Signals — See the assignment and the trapall shell script

• Signal is sent by the kill() system call

◦ The kill shell command also makes the kill() system call

• A process often terminates when it recieves a signal

• A process can trap a signal by executing some code when it recieves
the signal

• No process can ignore or trap the KILL signal or the STOP signal.

• Make sure you understand signals.
OSSI — ver. 1.1 Summary of the Subject — slide 19



Job Control

Job Control

• We stop a process with
☛
✡

✟
✠Control-Z

• This sends a STOP signal to the process.

• A stopped process is forced to stop executing, but is still using
memory and holding resources and file locks, that it was holding
when you sent it the STOP signal.

• Understand what fg, bg, jobs do.

• Read about this again in module 2.
OSSI — ver. 1.1 Summary of the Subject — slide 21


