
Systems and Network Management

Summary of Perl

1 Main Topics

Shebang Each Perl program begins with a “shebang”:

#! /usr/bin/perl -w

It tells the operating system which interpreter to use to execute

the program.

You can add options to this, such as the -w above, which

switches on additional warnings. I strongly recommend always

using this while developing the program.

1.1 Variables, Operators

Scalars and non-scalars There are two categories of variables:

scalars and non-scalars.

• scalars have a single value, such as "a string", and

• non-scalars have a list of values, such as (1, 2, "a string")

Non-scalars There are two types of non-scalars: arrays and

hashes.

• arrays are much like arrays in Java or C (though much

more versatile).

• hashes are like arrays that are indexed by strings, a bit like

java.util.Hashtable, but simpler and more flexible.

Nick Urbanik <nicku(at)nicku.org> ver. 1.0

<nicku(at)nicku.org>

Summary of Perl
Systems and Network Management 2

$, @ and % Scalar variable values always start with a $, such as

$var = 1;

Arrays variable values always start with a @, such as @array

= (2, 4, 6);

Hash variable values always start with a %, such as %hash =

(’NL’ => ’Netherlands’, BE => ’Belgium’);

Note that it is a value. For example, in @array, there is a

scalar value $array[0], and in %hash, there is a scalar value

$hash{"BE"}.

Variable Interpolation A variable can be put right into a string

like this: "The value of \$var is $var.\n"

If you print that string, the value of $var will be printed in

the string, instead of the four characters $var. Notice that,

just as in C, the backslash hides the special meaning of special

characters such as $.

Operators: Perl has all the operators of C, in the same priority

as in C.

Note Perl also has special operators for comparing strings:

Comparison Numeric String

equal == eq

not equal != ne

greater than > gt

less than < lt

greater than or equal to >= ge

less than or equal to <= le

use strict; Turns on compile-time checks for lots of possible

error conditions, such as undeclared variables, and other pos-

sible typing errors. I strongly recommend using this in all your

programs that are longer than half a page.

Nick Urbanik <nicku(at)nicku.org> ver. 1.0

<nicku(at)nicku.org>

Summary of Perl
Systems and Network Management 3

my and our: are used to declare local variables and static vari-

ables, respectively. Necessary if you put

use strict;

in your program.

1.2 Statements

if, while, for need braces: You must use braces in a normal

if statement, unlike in C or Java.

if statement: The if statement is similar to C or Java, except

that there is a keyword “elsif”:

if ($age > $max) {

print "Too old\n";

} elsif ($age < $min) {

print "Too young\n";

} else {

print "Just right\n";

}

for loops: There are two types of for loop, one as in C and Java,

the other is more useful in Perl:

for ($i = 0; $i < $max; ++$i) {

$sum += $array[i];

}

But this for loop is much more useful. Here is an example

that adds 1 to each element of an array:

foreach $a (@array) {

++$a;

}

Notice that $a here is made a reference to each element of the

array, so changing $a actually changes the array element. You

can write “for” or “foreach”, Perl won’t mind.

Nick Urbanik <nicku(at)nicku.org> ver. 1.0

<nicku(at)nicku.org>

Summary of Perl
Systems and Network Management 4

Special variable: $: this special variable appears as the de-

fault argument of many built-in functions, including print,

so this foreach loop prints all elements of array:

foreach (@array) {

print;

}

while loops: are rather like in C or Java.

while ($i < $max) {

++$i;

}

Reading each line from input files: We often use a while

loop to read each line from each of the files listed on the com-

mand line:

while (<>) {

print $_;

}

What this does is:

• If there are command line parameters to this script, then it

assumes that they are file names, and opens each in turn,

and loops once for each line in the file, setting $ to that

line

• Otherwise, it reads standard input, setting $ to each line.

Note that you could achieve the same result as above with:

print <>;

Reading from standard input only: is very similar to using

<>. This example prints each line of standard input:

Nick Urbanik <nicku(at)nicku.org> ver. 1.0

<nicku(at)nicku.org>

Summary of Perl
Systems and Network Management 5

while (<STDIN>) {

print $_;

}

next and last next is like continue in C; last is like break

in C.

1.3 Array operations

push add a value at the end of an array

pop remove and return value from end of an array

shift remove and return value from the beginning of an array

unshift add value to the beginning of an array

1.4 split and join

split splits a string into an array:

my $pwline = "nicku:x:500:500:Nick Urbanik:/home/nicku:/bin/bash";

my ($userid, $pw, $userid_number, $group_id_number,

$name, $home_dir, $shell) = split /:/, $pwline;

join is the opposite of split and joins an array into a string:

my $pwline = join ’:’, @pwfields;

1.5 Executing External Programs

Perl provides many ways of doing this, but we just used the system

built-in function. In the laboratory in creating user accounts, I have

written solutions that pass an array to system:

system: my @cmd = (

’useradd’,

’-c’, "\"$name\"",

’-p’, $hashed_passwd,

Nick Urbanik <nicku(at)nicku.org> ver. 1.0

<nicku(at)nicku.org>

Summary of Perl
Systems and Network Management 6

$id

);

print "@cmd\n";

system @cmd;

This also works:

system "useradd -c \"$name\" -p \"$hashed_passwd\" $id";

The difference is that the second form is usually passed to

a command shell (such as /bin/sh or CMD.EXE) to execute,

whereas the first form is executed directly.

Was the command successful? You can tell if the command

was successful by checking that the return value was zero:

if (system("useradd -c \"$name\" -p \"$hashed_passwd\" $id") != 0) {

print "useradd failed";

exit;

}

This is usually written in Perl more simply using the built in

function die, and the or operator:

system("useradd -c \"$name\" -p \"$hashed_passwd\" $id") == 0

or die "useradd failed";

2 Regular Expressions

We spent most time in the laboratory and in the lectures study-

ing and using regular expressions. Regular expressions are an im-

portant part of Perl. Regular expressions just been incorporated

into Java 1.4, and are based directly on Perl regular expressions.

Regular expressions are also used in many other programming lan-

guages, text editors, programs. . . even Microsoft Word. They will

be an important part of the exam.

Nick Urbanik <nicku(at)nicku.org> ver. 1.0

<nicku(at)nicku.org>

Summary of Perl
Systems and Network Management 7

You should be familiar with character classes, matching the be-

ginning and end of a line, and selecting part of a match. At an

absolute minimum, you must be familiar with the application of:
\ Quote the next metacharacter

^ Match the beginning of the line

. Match any character (except newline)

$ Match the end of the line (or before newline at the end)

| Alternation

() Grouping

[] Character class

* Match 0 or more times

+ Match 1 or more times

3 Perl Regular Expression Symbols: extracted from

perlre manual page

[Note: this table will be provided in the exam].

Nick Urbanik <nicku(at)nicku.org> ver. 1.0

<nicku(at)nicku.org>

Summary of Perl
Systems and Network Management 8

\ Quote the next metacharacter

^ Match the beginning of the line

. Match any character (except newline)

$ Match the end of the line (or before newline at

the end)

| Alternation

() Grouping

[] Character class

* Match 0 or more times

+ Match 1 or more times

? Match 1 or 0 times

{n} Match exactly n times

{n,} Match at least n times

{n,m} Match at least n but not more than m times

\w Match a “word” character (alphanumeric plus

“ ”)

\W Match a non-“word” character

\s Match a whitespace character

\S Match a non-whitespace character

\d Match a digit character

\D Match a non-digit character

(?:pattern) This is for clustering, not capturing; it groups

subexpressions like “()”, but doesn’t make back

references as “()” does.

Regular Expression Modifiers

i Do case-insensitive pattern matching.

x Extend your pattern’s legibility by permitting whitespace and

comments.

Nick Urbanik <nicku(at)nicku.org> ver. 1.0

<nicku(at)nicku.org>

