Perl and Regular Expressions

Regular Expressions are available as
part of the programming languages
Java, JScript, Visual Basic and
VBScript, JavaScript, C, C++, C#,
elisp, Perl, Python, Ruby, PHP, sed,
awk, and in many applications, such as
editors, grep, egrep.

Regular Expressions help you master
your data.

What is a Regular Expression?

« Powerful.

* Low level description:
- Describes some text
- Can use to:
* Verify a user's input
+ Sift through large amounts of data
- High level description:
- Allow you fo master your data

Systems and Network

Management Perl — Regular Expressions
[

Regular Expressions as a language

- Can consider regular expressions as a
language
* Made of two types of characters:
- Literal characters
+ Normal text characters
* Like words of the program
- Metacharacters

*+ The special characters+ 2 . * ~$ () [{ | \

* Act as the grammar that combines with the words
according to a set of rules to create and expression
that communicates an idea

Systems and Network
Management Perl — Regular Expressions 3

How to use a Regular
Expression

How to make a regular expression as
part of your program

What do they look like?

* InPerl, a regular expression begins
and ends with /, like this: /abe/

- /abe/ matches the string "abc"
- Are these literal characters or
metacharacters?
+ Returns true if matches, so often use
as condition in an if statement

Systems and Network

Management Perl — Regular Expressions

Example: searching for "Course:"

* Problem: want fo print all lines in all input
files that contain the string "Course:"

while (<>) {

my $line = $_;

if ($line =~ /Course:/) {

print $line;

}

}

* Or more concisely:
while (<>) {
print if $§_ =~ /Course:/;

Systems and Network

Management Perl — Regular Expressions

The "match operator' =~

« If just use /Course:/, this returns
true if $_ contains the string Course:

+ If want to test another string
variable $var to see if it contains
the regular expression, use

$var =~ /regular expression/

- Under what condition is this true?

Systems and Network

Management Perl — Regular Expressions

The "match operator' =~ 2

sets the string to be searched:
$_ = "perl for Win32";
is 'perl' inside $_?

if ($_ =~ /perl/) { print "Found perl\n" };

Same as the regex above.
Don't need the =~ as we are testing $_:

if (/perl/) { print "Found perl\n" };

Systems and Network

Management Perl — Regular Expressions

/i Matching without case
sensitivity

$_ = "perl for Win32";

this will fail because the case doesn't match:

if (/PeRl/) { print "Found PeRl\n" };

this will match, because there is an 'er' in 'perl':
if (/exr/) { print "Found er\n" };

this will match, because there is an 'n3' in 'Win32':
if (/n3/) { print "Found n3\n" };

this will fail because the case doesn't match:

if (/win32/) { print "Found win32\n" };

This matches because the /i at the end means
"match without case sensitivity":
if (/win32/i) { print "Found win32 (i)\n" };

Systems and Network

Management Perl — Regular Expressions

Embedding variables in regexps

Create two variables containing regular expressions
to search for:

my $find = 32;

my $find2 = " for ";

if (/$£find/) { print "Found '$find'\n" };
if (/$£find2/) { print "Found '$find2'\n" };

different way to do the above:
print "Found $find2\n" if /$find2/;

Systems and Network

Management Perl — Regular Expressions

Using !~ instead of =~

Looking for a space:

print "Found!\n" if / /;

both these are the same, but reversing the logic with
unless and !~

print "Found!'!'\n" unless $_ !~ / /;

print "Found!'\n" unless '/ /;

Systems and Network

Management Perl — Regular Expressions

10

1

The Metacharacters

The funny characters
What they do
How fo use them

Character Classes [...]

my @names = ("Nick", "Albert", "Alex",
foreach my $name (@names) {
if ($name =~ /[NP]ick/) {

print "$name: Out for a Pick Nick\n";

"pPick") ;

else {
print "$name is not Pick or Nick\n";

}

* Square brackets match a single character

Systems and Network

Management Perl — Regular Expressions

13

Negated character class: [~...]

* Match any single character that is
not a letter: [*A-Za-z]

* Match any character that is not a
space or a tab: [~ \t]

Systems and Network

Management Perl — Regular Expressions

15

Examples of use of [...]

* Match a capital letter:
[ABCDEFGHIJKLMNOPQRSTUVWXYZ]

+ Same thing: [A-Z]

« Match a vowel: [aeiou]

* Match a letter or digit: [A-Za-z0-9]

Systems and Network

Management Perl — Regular Expressions

14

Example using [*. . .]

+ This simple program prints only lines that contain
characters that are not a space:
while (<>)
{
print $_ if /[~ 1/;
}

+ This prints lines that start with a character that

is not a space:
while (<>)
{

print $_ if /A[* 1/;
}

* Notice that ~ has two meanings: one inside [.. .1,
the other outside.
Systems and Network

Management Perl — Regular Expressions

16

Shorthand for Common Character
Classes

+ Since matching a digit is very common, Per|
provides \d as a short way of writing
[0-9]

\D matches a non-digit: [*0-9]

\s matches any whitespace character;
shorthand for [\t\n\r\f]

\S non-whitespace, [* \t\n\r\f]
\w word character, [a-zA-Z0-9]
 \W non-word character, [* a-zA-20-9]

Systems and Network

Management Perl — Regular Expressions
[

17

Management
[

Matching any character

* The dot matches any character
except a newline

* This matches any line with at least 5
characters:

print if /..... /;

Systems and Network
Perl — Regular Expressions

18

Matching the beginning or end

* Yo match a line that contains exactly
five characters:

print if /~.. ... $/;
* the ” matches the beginning of the
line.

 the $ matches at the end of the line

Systems and Network

Management Perl — Regular Expressions

19

Matching Repetitions: * + 2
{n,m}

- To match zero or more:

- /a*/ will match zero or more letter a, so

matches ", "a", "aaaa", "qwereqwqwer", or

the nothing in front of anything!
+ to match at least one:
- /a+/ matches at least one "a"
- /a?/ matches zero or one "a"
- /a{3,5}/ matches between 3 and 5 "a"s.

Systems and Network

Management Perl — Regular Expressions

20

Example using .*

$_ = 'Nick Urbanik <nicku@vtc.edu.hk>';
print "found something in <>\n" if /<.*>/;

Find everything between quotes:
$ =
print "quoted!\n" if /"[*"]*"/;
print "too much!\n" if /".*"/;

Systems and Network

Management Perl — Regular Expressions

'He said, "Hi there!", and then "What\'s up?"';

21

Capturing the Match with (...)

 Often want to scan large amounts of
data, extracting important items

* Use parentheses and regular
expressions

- Silly example of capturing an email
address:

$_ = 'Nick Urbanik <nicku@vtc.edu.hk>';
print "found $1 in <>\n" if /< (.*)>/;

Systems and Network

Management Perl — Regular Expressions

22

Capturing the match: greediness

* Look at this example:

$_ = 'He said, "Hi there!", and then "What\'s up?"';
print "$1\n" if /" ([*"1*)"/;

print "$1\n" if /" (.*)"/;

* What will each print?

* The first one works; the second one prints:
Hi there!", and then "What's up?

* Why?
* Because *, ?, +, {m,n} are greedy!
+ They match as much as they possibly canl

Systems and Network

Management Perl — Regular Expressions

23

Being Stingy (not Greedy): ?

* Usually greedy matching is what we
want, but not always

« How can we match as little as
possible?

* Put a ? after the quantifier:

*? Match O or more times
+? Match 1 or more times
?? Match O or 1 time

{n,}? Match at least n times

{n,m}? Match at least n, but no more than m times

Systems and Network

Management Perl — Regular Expressions

24

Being Less Greedy: Example

+ We can solve the problem we saw earlier

using non-greedy matching:

$_ = 'He said, "Hi there!", and then "What\'s up?"';

print "$1\n" if /" ([*"]*)"/;
print "$1\n" if /" (.*?)"/;

* These both work, and match only

Hi there!

Systems and Network
Management Perl — Regular Expressions

Sifting through large amounts of
data

 Imagine you need to create computing
accounts for thousands of students

* As input, you have data of the form:
Some heading on the top of each page
More headings with other content, including blank lines

A tab character separates the columns

123456789 H123456 (1)
234567890 1234567 (2)
345678901 J345678(3)
987654321 A123456(1)

Systems and Network
Management Perl — Regular Expressions

26

Capturing the Match: (..

useradd() is a function defined elsewhere

that creates a computer account with

username as first parameter, password as

the second parameter

while (<>) {

if (/~(\d{9H\t([A-2]1\d{6}\ ([\dAI\))/) {

my $student id = $1;

my $hk id = $2;

useradd($student_id, $hk _id);
}

Systems and Network
Management Perl — Regular Expressions

The Substitution Operator s///

- Sometimes want to replace one string with
another (editing)
 Example: want to replace Nicholas with
Nick on input files:
while (<>)
{
$_ =~ s/Nicholas/Nick/;
print $_;
}

Systems and Network
Management Perl — Regular Expressions

28

Avoiding leaning toothpicks: /\/\/

Want to change a filename, edit the directory in the path
from, say /usr/local/bin/filename to /usr/bin/filename

+ Could do like this:
* s/\/usr\/local\/bin\//\/usx/\bin\//;
but this makes me dizzy!
We can do this instead:
+ s!\/usr/local/bin/!/usr/bin/!;
Can use any character instead of / ins///
For matches, can put m//, and use any char instead of /
Can also use parentheses or braces:
e s{...}{...}orm{...}

Systems and Network
Management Perl — Regular Expressions

29

Making regular expressions
readable: /x modifier

+ Sometimes regular expressions can
get long, and need comments inside so
others (or you later!) understand

« Use /x at the end of s///x or m//x

- Allows white space, newlines,
comments

Systems and Network
Management Perl — Regular Expressions

31

Substitution and the /g modifier

» If aninput line contains:
Nicholas Urbanik read "Nicholas Nickleby"

* then the output is:

Nick Urbanik read "Nicholas Nickleby"
 How change all the Nicholas in one line?
* Use the /g (global) modifier:

while (<>)

{
$_ =~ s/Nicholas/Nick/g;
print $_;
}
Systems and Network
Management Perl — Regular Expressions

30

