
Perl and Regular Expressions
Regular Expressions are available as part of the programming languages
Java, JScript, Visual Basic and VBScript, JavaScript, C, C++, C#,
elisp, Perl, Python, Ruby, PHP, sed, awk, and in many applications,

such as editors, grep, egrep.

Regular Expressions help you master your data.

What is a Regular Expression?
Powerful.
Low level description:
Describes some text

Can use to:

Verify a user’s input

Sift through large amounts of data

High level description:
Allow you to master your data

Regular Expressions as a language
Can consider regular expressions as a language

Made of two types of characters:

Literal characters

Normal text characters

Like words of the program

Metacharacters
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The special characters + ? . * ˆ $ ( ) [ { | \

Act as the grammar that combines with the words according to a set of rules to create and
expression that communicates an idea

How to use a Regular Expression
How to make a regular expression as part of your program

What do they look like?
In Perl, a regular expression begins and ends with /, like
this: /abc/

/abc/ matches the string "abc"
Are these literal characters or metacharacters?

Returns true if matches, so often use as condition in an if
statement
Example: searching for "Course:"
Problem: want to print all lines in all input files that contain the string
"Course:"

while ( <> ) {

my $line = $_;

if ( $line =˜ /Course:/ ) {

print $line;

}

}
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Or more concisely:

while ( <> ) {

print if $_ =˜ /Course:/;

}

The "match operator" =˜
If just use /Course:/, this returns true if $_ contains the
string Course:

If want to test another string variable $var to see if it
contains the regular expression, use

$var =˜ /regular expression/

Under what condition is this true?
The "match operator" =˜ 2
# sets the string to be searched:

$_ = "perl for Win32";

# is ’perl’ inside $_?

if ( $_ =˜ /perl/ ) { print "Found perl\n" };

# Same as the regex above.

# Don’t need the =˜ as we are testing $_:

if ( /perl/ ) { print "Found perl\n" };
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/i Matching without case sensitivity
$_ = "perl for Win32";

# this will fail because the case doesn’t match:

if ( /PeRl/ ) { print "Found PeRl\n" };

# this will match, because there is an ’er’ in ’perl’:

if ( /er/ ) { print "Found er\n" };

# this will match, because there is an ’n3’ in ’Win32’:

if ( /n3/ ) { print "Found n3\n" };

# this will fail because the case doesn’t match:

if ( /win32/ ) { print "Found win32\n" };

# This matches because the /i at the end means

# "match without case sensitivity":

if ( /win32/i ) { print "Found win32 (i)\n" };

Using !˜ instead of =˜
# Looking for a space:

print "Found!\n" if / /;

# both these are the same, but reversing the logic with

# unless and !˜

print "Found!!\n" unless $_ !˜ / /;
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print "Found!!\n" unless ! / /;

Embedding variables in regexps
# Create two variables containing regular expressions

# to search for:

my $find = 32;

my $find2 = " for ";

if ( /$find/ ) { print "Found ’$find’\n" };

if ( /$find2/ ) { print "Found ’$find2’\n" };

# different way to do the above:

print "Found $find2\n" if /$find2/;

The Metacharacters
The funny characters

What they do

How to use them

Character Classes [...]
my @names = ( "Nick", "Albert", "Alex", "Pick" );
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foreach my $name ( @names ) {

if ( $name =˜ /[NP]ick/ ) {

print "$name: Out for a Pick Nick\n";

else {

print "$name is not Pick or Nick\n";

}

}

Square brackets match a single character

Examples of use of [...]
Match a capital letter:
[ABCDEFGHIJKLMNOPQRSTUVWXYZ]

Same thing: [A-Z]

Match a vowel: [aeiou]

Match a letter or digit: [A-Za-z0-9]

Negated character class: [ˆ...]
Match any single character that is not a letter: [ˆA-Za-z]

Match any character that is not a space or a tab: [ˆ \t]

Example using [ˆ...]
This simple program prints only lines that contain characters that are not a space:
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while ( <> )

{

print $_ if /[ˆ ]/;

}

This prints lines that start with a character that is not a space:

while ( <> )

{

print $_ if /ˆ[ˆ ]/;

}

Notice that ˆ has two meanings: one inside [...], the other outside.

Shorthand for Common Character Classes
Since matching a digit is very common, Perl provides \d as a short way
of writing
[0-9]

\D matches a non-digit: [ˆ0-9]

\s matches any whitespace character; shorthand for [ \t\n\r\f ]

\S non-whitespace, [ˆ \t\n\r\f ]

\w word character, [a-zA-Z0-9_]

\W non-word character, [ˆ a-zA-Z0-9_]

Matching any character
The dot matches any character except a newline
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This matches any line with at least 5 characters:

print if /...../;

Matching the beginning or end
to match a line that contains exactly five characters:

print if /ˆ.....$/;

the ˆ matches the beginning of the line.

the $ matches at the end of the line

Matching Repetitions: * + ? {n,m}
To match zero or more:

/a*/ will match zero or more letter a, so matches "", "a", "aaaa",
"qwereqwqwer", or the nothing in front of anything !

to match at least one:

/a+/ matches at least one "a"

/a?/ matches zero or one "a"

/a{3,5}/ matches between 3 and 5 "a"s.

Example using .*
$_ = ’Nick Urbanik <nicku@nicku.org>’;

print "found something in <>\n" if /<.*>/;

# Find everything between quotes:
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$_ = ’He said, "Hi there!", and then "What\’s up?"’;

print "quoted!\n" if /"[ˆ"]*"/;

print "too much!\n" if /".*"/;

Capturing the Match with (...)
Often want to scan large amounts of data, extracting
important items

Use parentheses and regular expressions

Silly example of capturing an email address:
$_ = ’Nick Urbanik <nicku@nicku.org>’;

print "found $1 in <>\n" if /<(.*)>/;

Capturing the match: greediness
Look at this example:

$_ = ’He said, "Hi there!", and then "What\’s up?"’;

print "$1\n" if /"([ˆ"]*)"/;

print "$1\n" if /"(.*)"/;

What will each print?

The first one works; the second one prints:
Hi there!", and then "What’s up?

Why?

Because *, ?, +, {m,n} are greedy !
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They match as much as they possibly can!

Being Stingy (not Greedy): ?
Usually greedy matching is what we want, but not always

How can we match as little as possible?

Put a ? after the quantifier:
*? Match 0 or more times

+? Match 1 or more times

?? Match 0 or 1 time

{n,}? Match at least n times

{n,m}? Match at least n, but no more than m times

Being Less Greedy: Example
We can solve the problem we saw earlier using non-greedy
matching:
$_ = ’He said, "Hi there!", and then "What\’s up?"’;

print "$1\n" if /"([ˆ"]*)"/;

print "$1\n" if /"(.*?)"/;

These both work, and match only
Hi there!

Sifting through large amounts of data
Imagine you need to create computing accounts for
thousands of students
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As input, you have data of the form:
Some heading on the top of each page

More headings with other content, including blank lines

A tab character separates the columns

123456789 H123456(1)

234567890 I234567(2)

345678901 J345678(3)

... ...

987654321 A123456(1)

Capturing the Match: (...)
# useradd() is a function defined elsewhere

# that creates a computer account with

# username as first parameter, password as

# the second parameter

while ( <> ) {

if ( /ˆ(\d{9})\t([A-Z]\d{6}\([\dA]\))/ ) {

my $student_id = $1;

my $hk_id = $2;

useradd( $student_id, $hk_id );

}
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The Substitution Operator s///
Sometimes want to replace one string with another (editing)

Example: want to replace Nicholas with Nick on input files:

while ( <> )

{

$_ =˜ s/Nicholas/Nick/;

print $_;

}

Avoiding leaning toothpicks: /\/\/
Want to change a filename, edit the directory in the path from, say /usr/local/bin/filename to
/usr/bin/filename

Could do like this:

s/\/usr\/local\/bin\//\/usr/\bin\//;

but this makes me dizzy!

We can do this instead:

s!\/usr/local/bin/!/usr/bin/!;

Can use any character instead of / in s///

For matches, can put m//, and use any char instead of /

Can also use parentheses or braces:

s{...}{...} or m{...}
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Substitution and the /g modifier
If an input line contains:

Nicholas Urbanik read "Nicholas Nickleby"

then the output is:

Nick Urbanik read "Nicholas Nickleby"

How change all the Nicholas in one line?

Use the /g (global) modifier:

while ( <> )

{

$_ =˜ s/Nicholas/Nick/g;

print $_;

}

Making regular expressions readable: /x
modifier
Sometimes regular expressions can get long, and need
comments inside so others (or you later!) understand

Use /x at the end of s///x or m//x

Allows white space, newlines, comments
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