
Perl

A language for Systems and Network Administration and
Management

Nick Urbanik

nicku@nicku.org

A computing department

Copyright Conditions: Open Publication License

(see http://www.opencontent.org/openpub/)

http://www.opencontent.org/openpub/

What is Perl?
What is Perl? . slide #2
What is Perl? — 2 . slide #3
Compiled and run each time . slide #4
Perl is Evolving . slide #5
Eclectic. slide #6
Regular Expressions. slide #7

Example Problem
Why should I learn it? . slide #8
The available data . slide #9
Sample data for new courses: . slide #10
Problems . slide #11
Solution in Perl — 1 . slide #12
Solution in Perl — 2 . slide #13
Solution in Perl — 3 . slide #14
But I can use any other language! slide #15
Other Solutions may take Longer to Write slide #16
The hello world program . slide #17

Variables
Variables. slide #18
$Scalars: . slide #19
@Array . slide #20
%Hashes . slide #21
Conclusion . slide #22

Perl Community
An Overview of Perl . slide #23
Where do I get Perl? . slide #24
Where do I get Info about Perl?—1. slide #25
Where do I get Info about Perl?—2. slide #26
CPAN, PPM: Many Modules . slide #27
PPM: Perl Package Manager . slide #28
Mailing Lists: help from experts slide #29
How to ask Questions on a List. slide #30

The Shabang
Where is Perl on my system? . slide #31
How OS knows it’s a Perl program—1 slide #32
How OS knows it’s a Perl program—2 slide #33

Language Overview
Language Overview . slide #34
Language Overview — 2 . slide #35

Data Types
Funny Characters $, @, % . slide #36
Arrays . slide #37
Array Examples. slide #38
More About Arrays . slide #39
List Assignment. slide #40
Even More About Arrays . slide #41
Scalar, List Context . slide #42
Hashes . slide #43
Initialising a Hash . slide #44
Hash Examples — 1. slide #45
Hash Examples — 2. slide #46
Hash slices . slide #47
Another Hash Example . slide #48
Hashes are Not Ordered . slide #49

Good Practice
Discipline—use warnings . slide #50
use strict and Declaring Variables slide #51
Examples of use strict and Variables slide #52

Operators, Quoting
Operators and Quoting . slide #53
Quoting . slide #54

Input, Output
Input and Output . slide #55
What is Truth? . slide #56

Statements
Statements for Looping and Conditions slide #57
if Statements . slide #58
unless Statement . slide #59
while loop . slide #60
Input with while. slide #61
The Special $ variable. slide #62
while and the <> operator . slide #63
while and the <> operator — 2 slide #64

for loop . slide #65
foreach loop . slide #66

Iteration
Iterating over a Hash . slide #67
Iterating over a Hash in Sorted Order slide #68
Iterating over a Hash in Sorted Order slide #69

Other Statements
Exit a Loop Early . slide #70
“Backwards” Statements . slide #71
“Backwards” Statements—Examples slide #72

List Operations
Array Operations—push and pop slide #73
Array Ops—shift and unshift slide #74
split and join . slide #75

Subroutines
Subroutines. slide #76
Parameters — 1 . slide #77
Parameters — 2 . slide #78

Error Handling
Checking for Errors: die and warn slide #79

File and Process I/O
Files and Filehandles . slide #80
Open for Writing . slide #81
Executing External Programs . slide #82
system . slide #83
Was system Call Successful? . slide #84
Was system Call Successful? — 2 slide #85
Backticks: ‘...‘ or qx{...} . slide #86
See the perl summary . slide #87

Regular Expressions
Regular Expressions. slide #88
What is a Regular Expression? slide #89
Regular Expressions as a language slide #90
How to use a Regular Expression slide #91
What do they look like? . slide #92
Example: searching for “Course:” slide #93
The “match operator” =∼ . slide #94

The “match operator” =∼ — 2 slide #95
/i — Matching without case sensitivity. slide #96
Using !∼ instead of =∼ . slide #97
Embedding variables in regexps slide #98
The Metacharacters . slide #99
Character Classes [...]. slide #100
Examples of use of [...] . slide #101
Negated character class: [^...] slide #102
Example using [^...] . slide #103
Shorthand: Common Character Classes slide #104
Matching any character . slide #105
Matching the beginning or end slide #106
Matching Repetitions: * + ? {n,m} slide #107
Example using .* . slide #108
Capturing the Match with (...) slide #109
Capturing the match: greediness slide #110
Being Stingy (not Greedy): ? . slide #111
Being Less Greedy: Example . slide #112
Sifting through large amounts of data slide #113
Capturing the Match: (...) . slide #114
The Substitution Operator s/// slide #115
Avoiding leaning toothpicks: /\/\/. slide #116
Substitution and the /g modifier. slide #117
Readable regex: /x Modifier . slide #118

Other Topics
Special Vars: Input Record Separator slide #119
Paragraph, Whole-file Modes . slide #120
localising Global Variables . slide #121
One Line Perl Programs . slide #122
References. slide #123

What is Perl?

• Perl is a programming language

• The best language for processing text

• Cross platform, free, open

• Microsoft have invested heavily in ActiveState to improve support
for Windows in Perl

• Has excellent connection to the operating system

• Has enormous range of modules for thousands of application types
SNM — ver. 1.7 Perl — slide #2

What is Perl? — 2

• Robust and reliable (has very few bugs)

• Supports object oriented programming

• Good for big projects as well as small

• Java 1.4 has borrowed one of Perl’s best features: regular expres-
sions

• Perl has garbage collection

• The “duct tape of the Internet”

• Easy to use, since it usually “does the right thing”

• Based on freedom of choice: “There is more than one way to do

it!” — timtowtdi™
SNM — ver. 1.7 Perl — slide #3

Compiled and run each time

• Perl is interpreted, but runs about as fast as a Java program

• Software development is very fast

• The Apache web server provides mod perl, allows Perl applica-
tions to run very fast

• Used on some very large Internet sites:

– The Internet Move Database

– Macromedia, Adobe, http://slashdot.org/
SNM — ver. 1.7 Perl — slide #4

Perl is Evolving

• Perl 6 will introduce many great features to make Perl

– easier to use

– Even more widely usable for more purposes

– Even better for bigger projects
SNM — ver. 1.7 Perl — slide #5

Eclectic

• Borrows ideas from many languages, including:

• C, C++

• Shell

• Lisp

• basic

• . . . even Fortran

• Many others. . .
SNM — ver. 1.7 Perl — slide #6

http://slashdot.org/

Regular Expressions

• One of the best features of Perl

• A new concept for most of you

• . . . But very useful!

• Used to:

– extract information from text

– transform information

– You will spend much time in this topic learning about regular
expressions — see slide 47

SNM — ver. 1.7 Perl — slide #7

Why should I learn it?

• It will be in the final exam!

– Okay, that’s to get your attention, but. . .

• Consider a real-life sys-admin problem:

– You must make student accounts for 1500 students

– TEACHING BEGINS TOMORROW!!!

– The Computing Division has a multi-million dollar applica-
tion to give you student enrollment data

– . . . but it can only give you PDF files with a strange and
irregular format for now (But Oh, it will be infinitely better
in the future! Just wait a year or two. . .)

SNM — ver. 1.7 Perl — slide #8

The available data

• Has a variable number of lines before the student data begins

• Has a variable number of columns between different files

• Has many rows per enrolled student

• Goes on for dozens of pages, only 7 students per page!!!!!!!

• There are two formats, both equally peculiar!!!!
SNM — ver. 1.7 Perl — slide #9

Sample data for new courses:

15 N CHAN Wai Yee F 993175560 H123456(5) 28210216 CHEUNG

10-SEP-01 10-SEP-01 21234567 WAI CHI SISTER 91234567

SNM — ver. 1.7 Perl — slide #10

Problems

• There is a different number of lines above the student records

• There is a different number of characters within each column from
file to file

• There are many files

• The format can change any time the computing division deter-
mines necessary

SNM — ver. 1.7 Perl — slide #11

Solution in Perl — 1
#! /usr/bin/perl -w

use strict;

my $course;

my $year;

while (<>)

{

chomp;

if (/^\s*Course :\s(\d+)\s/)

{

$course = $1;

undef $year;

next;

}

SNM — ver. 1.7 Perl — slide #12

Solution in Perl — 2
elsif (m!^\s*Course :\s(\d+)/(\d)\s!)

{

$course = $1;

$year = $2;

next;

}

if (

my ($name, $gender, $student_id, $hk_id)

= m{

\s\s+ # at leaset 2 spaces

(# this matches $name

[A-Z]+ # family name is upper case

(?:\s[A-Z][a-z]*)+ # one or more given names

)

\s\s+ # at leaset 2 spaces

([MF]) # gender

\s+ # at least one space

(\d{9}) # student id is 9 digits

\s\s+ # at leaset 2 spaces

([a-zA-Z]\d{6}\([\dA-Z]\)) # HK ID

}x

)

SNM — ver. 1.7 Perl — slide #13

Solution in Perl — 3
{

print "sex=$gender, student ID = $student_id, ",

"hkID = $hk_id, course = $course, name=$name, ",

defined $year ? "year = $year\n" : "\n";

next;

}

warn "POSSIBLE UNMATCHED STUDENT: $_\n" if m!^\s*\d+\s+!;

}

SNM — ver. 1.7 Perl — slide #14

But I can use any other language!

• I will give you HK$200 if you are the first person to write a solution
in another language in fewer keystrokes

• Note: the Perl solution given has:

– comments

– Plenty of space to show structure

– . . . and handles exceptional situations (i.e., it is robust)

• To claim your $200 from Nick, your solution must have

– similar space for comments

– Similar readability and robustness

– Be written in a general purpose language using ordinary li-
braries

SNM — ver. 1.7 Perl — slide #15

Other Solutions may take Longer to Write

• This program took a very short time to write

• It is very robust

• For problems like this, Perl is second to no other programming
language.

SNM — ver. 1.7 Perl — slide #16

The hello world program

print "hello world\n"

SNM — ver. 1.7 Perl — slide #17

Variables

• There are three basic types of variable:

• Scalar (can be a number or string or. . .)

• Array (an ordered array of scalars)

• Hash (an unordered array of scalars indexed by strings instead
of numbers)

• Each type distinguished with a “funny character”
SNM — ver. 1.7 Perl — slide #18

$Scalars:

• Start with a dollar sign

• Hold a single value, not a collection

• A string is a scalar, so is a number

• Since Perl is a loosely typed language, a scalar can be an integer,
a floating point number, a character or a string.

– Note that later you will see that a scalar can also hold a
reference to another piece of data, which may also be an
array or hash.

• Examples:

$apple = 2;

$banana = "curly yellow fruit";

SNM — ver. 1.7 Perl — slide #19

@Array

• Starts with a @

• Indexes start at 0, like in C or Java

• Each entry in an array is a scalar.

– Multidimensional arrays are made by entry of an array being
a reference to another array.

• See slide 19
SNM — ver. 1.7 Perl — slide #20

%Hashes

• Unfamiliar concept to many of you

• Like an array, but indexed by a string

• A data structure like a database

• See slide 22
SNM — ver. 1.7 Perl — slide #21

Conclusion

• Perl is optimised for text and systems administration program-
ming

• Has great portability

• Is strongly supported by Microsoft

• Has three main built-in data types:

• Scalar: starts with $

• Array: starts with @

• Hash: starts with %
SNM — ver. 1.7 Perl — slide #22

An Overview of Perl

A language for Systems and Network

Administration and Management:

An overview of the language

SNM — ver. 1.7 Perl — slide #23

Where do I get Perl?

• For Windows, go to http://www.activestate.com, download the
installer

• For Linux: it will be already installed

• For other platforms: go to http://www.perl.com

• This is a good source of other information about Perl
SNM — ver. 1.7 Perl — slide #24

http://www.activestate.com
http://www.perl.com

Where do I get Info about Perl?—1

• On your hard disk:

– $ perldoc -f 〈function〉

∗ will look up the documentation for the built-in 〈function〉
(from the documentation perlfunc)

– $ perldoc -q 〈word〉

∗ will look up 〈word〉 in the headings of the faq

– $ perldoc perl

∗ shows a list of much of your locally installed documen-
tation, divided into topics

– ActiveState Perl provides a Programs menu item that links
to online html documentation

SNM — ver. 1.7 Perl — slide #25

Where do I get Info about Perl?—2

• Web sites:

– http://www.perl.com

– http://www.activestate.com

– http://use.perl.org

• See slide 64 for a list of books.
SNM — ver. 1.7 Perl — slide #26

http://www.perl.com
http://www.activestate.com
http://use.perl.org

CPAN, PPM: Many Modules

• A very strong feature of Perl is the community that supports it

• There are tens of thousands of third party modules for many, many
purposes:

– Eg. Net::LDAP module supports all ldap operations,
Net::LWP provides a comprehensive web client

• Installation is easy:

$ sudo perl -MCPAN -e shell

cpan> install Net::LDAP

• Will check if a newer version is available on the Internet from
cpan, and if so, download it, compile it, test it, and if it passes
tests, install it.

SNM — ver. 1.7 Perl — slide #27

PPM: Perl Package Manager

• For Windows

• Avoids need for a C compiler, other development tools

• Download precompiled modules from ActiveState and other sites,
and install them:

C:\> ppm install Net::LDAP

• See documentation with ActiveState Perl
SNM — ver. 1.7 Perl — slide #28

Mailing Lists: help from experts

• There are many mailing lists and newsgroups for Perl

• When subscribe to mailing list, receive all mail from list

• When send mail to list, all subscribers receive

• For Windows, many lists at http://www.activestate.com
SNM — ver. 1.7 Perl — slide #29

How to ask Questions on a List

• I receive many email questions from students about many topics

• Most questions are not clear enough to be able to answer in any
way except, “please tell me more about your problem”

• Such questions sent to mailing lists are often unanswered

• Need to be concise, accurate, and clear

• see also Eric Raymond’s How to Ask Questions the Smart Way at
http://catb.org/~esr/faqs/smart-questions.html

• Search the faqs first—see slide 13
SNM — ver. 1.7 Perl — slide #30

Where is Perl on my system?

• ActiveState Perl installs perl.exe in C:\Perl\perl.exe

• Linux systems have a standard location for perl at /usr/bin/perl

• On some Unix systems, it may be installed at
/usr/local/bin/perl

SNM — ver. 1.7 Perl — slide #31

http://www.activestate.com
http://catb.org/~esr/faqs/smart-questions.html

How OS knows it’s a Perl program—1

• To run your Perl program, os needs to call perl

• How does os know when to call Perl?

• Linux, Unix:

– programs have execute permission:

$ chmod +x 〈program〉

∗ os reads first 2 bytes of program: if they are “#!” then
read to end of line, then use that as the interpreter

∗ os doesn’t care what your program file is called

– If program file is not in a directory on your PATH, call it like
this:

$./〈program〉
SNM — ver. 1.7 Perl — slide #32

How OS knows it’s a Perl program—2

• Windows:

– os uses the extension of the file to decide what to do (e.g.,
.bat, .exe)

– Your program names end with .pl

• For cross platform support:

– Put this at the top of all your programs:

#! /usr/bin/perl -w

– Name your programs with an extension .pl

SNM — ver. 1.7 Perl — slide #33

Language Overview

• variables: scalars, arrays and hashes — §18–§27

• compiler warnings, use strict; — §26–§27

• operators, quoting — §28–§29

• input and output — §30

• statements: — §31

– if. . . elsif. . . else and unless statements — §31–§32

– while, for and foreach loops — §32–§36

∗ iterating over arrays and hashes — §36–§37

– Exit early from a loop with last, and next — §38

– “backwards” statements — §38–§39
SNM — ver. 1.7 Perl — slide #34

Language Overview — 2

• We also will examine:

– subroutines, parameters and return statement — §41–§42

– array operations — §39–§40

– Error reporting: die and warn — §42

– Opening files — §43–§44

– executing external programs — §44–§46

– regular expressions — §47–§60

– Special input modes — §61–§62

– One line Perl programs — §63
SNM — ver. 1.7 Perl — slide #35

Funny Characters $, @, %

• Variables in Perl start with a funny character

• Why?

• No problem with reserved words:

• can have a variable called $while, and another variable called
@while, and a third called %while.

• Can interpolate value into a Double-quoted string (but not a single
quoted string):

my $string = "long";

my $number = 42.42;

print "my string is $string ",

"and my number is $number\n";

SNM — ver. 1.7 Perl — slide #36

Arrays

• Define an array like this:

my @array = (1, 5, "fifteen");

• This is an array containing three elements

• The first can be accessed as $array[0], second as $array[1], the
last as $array[2]

• Note that since each element is a scalar, it has the $ funny char-
acter for a scalar variable value

• In Perl, we seldom use an array with an index—use list processing
array operations: push, pop, shift, unshift, split, grep, map
and iterate over arrays with the foreach statement—see slide 36

– higher level.
SNM — ver. 1.7 Perl — slide #37

Array Examples

• Use the qw// “quote words” operator to help initialise arrays —
see slide 29

• See slide 36 for how the foreach loop works.

my @fruit = qw(apple banana mandarin

peach pear plum);

foreach my $fruit (@fruit) {

print "$fruit\n";

}

• Note that these two are equivalent:

my @fruit = qw(apple banana mandarin

peach pear plum);

my @fruit = ("apple", "banana", "mandarin",

"peach", "pear", "plum");

SNM — ver. 1.7 Perl — slide #38

More About Arrays

• Instead of initialiasing the array as in slide 19, we can initialise
the elements one by one:

my @fruit;

$fruit[0] = "apple";

$fruit[1] = "banana";

...

$fruit[5] = "plum";

• We can get a slice of an array:

my @favourite_fruit = @fruit[0, 3];

print "@favourite_fruit\n";

– execute the program:

$./slice.pl

apple peach

SNM — ver. 1.7 Perl — slide #39

List Assignment

• We can use a list of scalars whenever it makes some sense, e.g.,

– We can assign a list of scalars to a list of values

• Examples:

my (@a, $b, $c) = (1, 2, 3);

my @array = (@a, $b, $c);

my ($d, $e, $f) = @array;

SNM — ver. 1.7 Perl — slide #40

Even More About Arrays

• How many elements are in the array? See slide 22

print scalar @fruit, "\n"

• Does the array contain any data? See slide 32

print "empty\n" unless @fruit;

• Is there any data at the index $index?

if (defined $fruit[$index]

and $fruit[$index] eq "apple") {

print "found an apple.\n";

}

– See perldoc -f defined. Also see perdoc -f exists.
SNM — ver. 1.7 Perl — slide #41

Scalar, List Context

• Each part of a program expects a value to be either scalar or list

• Example: print is a list operator, so if you print something, it
is in list context

• If you look in the Perl Reference, you will see LIST shown as a
parameter to many functions.

– Any value there will be in a list context

• Many built-in functions, and your own functions (see
perldoc -f wantarray), can give a different result in a
scalar or list context

• force scalar context with scalar, e.g.,

print "the time is now ", scalar localtime, "\n";

SNM — ver. 1.7 Perl — slide #42

Hashes

• Hashes are probably new to you

• Like an array, but indexed by a string

• Similar idea was implemented in java.lang.HashTable

• Perl hashes are easier to use
SNM — ver. 1.7 Perl — slide #43

Initialising a Hash

my %hash = (NL => ’Netherlands’,

BE => ’Belgium’);

• This creates a hash with two elements

• one is $hash{NL}, has value “Netherlands”;

• the other is $hash{BE} with value “Belgium”

• The “=>” is a “quoting comma”.

– It is the same as a comma, but it also quotes the string on
its left.

– So you can write the above like this:

my %hash = (’NL’, ’Netherlands’,

’BE’, ’Belgium’);

but the “=>” operator make it more clear which is the key
and which is the value.

SNM — ver. 1.7 Perl — slide #44

Hash Examples — 1

• As with arrays, you make a new element just by assigning to it:

my %fruit;

$fruit{apple} = "crunchy";

$fruit{peach} = "soft";

• Here, we made two hash elements.

– The keys were "apple" and "peach".

– The corresponding values were "cruchy" and "soft".

• You could print the values like this:

print "$fruit{apple}, $fruit{peach}\n";

prints: crunchy, soft

SNM — ver. 1.7 Perl — slide #45

Hash Examples — 2

• How to see if a hash is empty? See 32

print "empty\n" unless %fruit;

• How to delete a hash element?

delete $fruit{coconut};

• Hashes are often useful for storing counts (see slides 32–34 for
more about while loops):

my %wordcounts;

while (<>) {

chomp;

++$wordcount{$_};

}
SNM — ver. 1.7 Perl — slide #46

Hash slices

• We can assign some values to part of a hash:

$score{fred} = 150;

$score{barney} = 100;

$score{dino} = 10;

• We could use a list assignment (see §21):

($score{fred}, $score{barney}, $score{dino})

= (150, 100, 10);

. . . too long. A hash slice makes this easier:

@score{ "fred", "barney", "dino" } = (150, 100, 10);

• We can interpolate this too (see slides 18 and 29):

my @players = qw(fred barney dino);

print "scores are @score{@players}\n";

SNM — ver. 1.7 Perl — slide #47

Another Hash Example

• Often used to keep a count of the number of occurrences of data
read in:

#! /usr/bin/perl -w

use strict;

our %words;

while (<>) {

next unless /\S/; # Skip blank lines

my @line = split;

foreach my $word (@line) {

++$words{$word};

}

}

print "Words unsorted, in the order they come from the hash:\n\n";

foreach my $word (keys %words) {

printf "%4d %s\n", $words{$word}, $word;

}

• see slide 32 for while loop, slide 34 for while (<>), slide 36 for the foreach statement,

slides 32 and 38 for the unless statement

SNM — ver. 1.7 Perl — slide #48

Hashes are Not Ordered

• A big difference from arrays is that hashes have no order.

• The data in a hash will be available in only an unpredictable order.

• See slide 36 for how to iterate over hash elements
SNM — ver. 1.7 Perl — slide #49

Discipline—use warnings

• Better to let compiler detect problems, not your customer

• Develop your program with all warnings enabled

• Either:

– put -w as an option to perl when execute the program, i.e.,

∗ Make the first line of your program:

#! /usr/bin/perl -w

∗ Or better: put a line:

use warnings;

near the top of your program.
SNM — ver. 1.7 Perl — slide #50

use strict and Declaring Variables

• All programs that are more than a few lines long should have the
pragma use strict;

• This turns on additional checking that all variables are declared,
all subroutines are okay, and that references to variables are “hard
references” — see perldoc strict.

• All variables that you use in your program need to be declared
before they are used with either my or our.

• my defines a local variable that exists only in the scope of the
current block, or outside of a block, in the file.

– See perldoc my.

• our defines a global variable.

– See perldoc our.
SNM — ver. 1.7 Perl — slide #51

Examples of use strict and Variables

• Without use strict, a variable just springs into life whenever
you use it.

• Problem: a typing mistake in a variable creates a new variable and
a hard-to-find bug!

• . . . so always start your programs like this:

#! /usr/bin/perl

use warnings;

use strict;

• use warnings; enables compile time warnings which help find
bugs earlier—see perldoc warnings

• After use strict, it will be an error to use a variable without
declaring it with my or our.

– Most code examples in these notes define variables with my

or our
SNM — ver. 1.7 Perl — slide #52

Operators and Quoting

• Perl has all the operators from C (and so Java), in same precedence

• Has more operators for strings:

• Join strings with a dot, e.g.

print "The sum of 3 and 4 is " . 3 + 4 . "\n";

• Quote special characters with backslash, as in C or Java

print "\$value = $value\n";

• Can quote all characters using single quotes:

print ’output of \$perl = "rapid";print \$perl; is "rapid"’;

• Note that double quotes are okay in single quotes, single quotes
okay in double quotes.

• Documentation in perldoc perlop.
SNM — ver. 1.7 Perl — slide #53

Quoting

• Perl has lots of ways of quoting, too many to list here

Meaning Interpolates Slide
’’ q// Literal No §28, §18
"" qq// Literal Yes §28, §18
‘‘ qx// Command Yes §46
() qw// quote word list No §19,§38
// m// Pattern match Yes §50
s/// s/// Substitution Yes §59
y/// tr/// Translation No

– See slide 18 for meaning of “interpolate”

• y/// or tr/// works just like the posix tr (translate) program
in Linux.

SNM — ver. 1.7 Perl — slide #54

Input and Output

• Read from standard input like this:

my $value = <STDIN>;

• Note that there will be a newline character read at the end

– To remove trailing newline, use chomp:

chomp $value;

– The word STDIN is a predefined filehandle.

∗ You can define your own filehandles with the open built-
in function.

• write to standard output with the list operator print

– print takes a list of strings:

print "The product of $a and $b is ",

$a * $b, "\n";
SNM — ver. 1.7 Perl — slide #55

What is Truth?

• Anything that has the string value "" or "0" is false

• Any other value is true.

• This means:

– No number is false except 0

– any undefined value is false

– any reference is true (see perldoc perlref)

• Examples:

0 # becomes the string "0", so false

1 # becomes the string "1", so true

0.00 # becomes 0, would convert to the string "0", so false

"" # The null string, so false

"0.00" # the string "0.00", neither empty nor "0", so true

undef() # a function returning the undefined value, so false

SNM — ver. 1.7 Perl — slide #56

Statements for Looping and Conditions

• We look at the following statements in the language:

– if. . . elsif. . . else statements — §31

∗ The unless statement is similar to the if statement —
§32

– while loops — §32

∗ processing input using while

∗ The <> operator

– for loops — §35

– foreach loops — §36

∗ iterating over arrays and hashes with foreach, while —
§36–§37

– Exit early from a loop with last, and next — §38

• We will also look at “backwards statements” — §38–§39
SNM — ver. 1.7 Perl — slide #57

if Statements

• if statements work as in C or Java, except:

– braces are required, not optional

– Use elsif instead of else if

• Example:

if ($age > $max) {

print "Too old\n";

} elsif ($age < $min) {

print "Too young\n";

} else {

print "Just right\n";

}
SNM — ver. 1.7 Perl — slide #58

unless Statement

• Same as if statement,

– except that the block is executed if the condition is false:

unless ($destination eq $home {

print "I’m not going home.\n";

}

↙ corresponds to: ↘

unless (〈condition〉) {
〈statements. . . 〉;

}

if (! (〈condition〉)) {
〈statements. . . 〉;

}

• else works, but I suggest you don’t use it

– Use if. . . else instead
SNM — ver. 1.7 Perl — slide #59

while loop

• Just as in C or Java

– . . . but braces are required:

while ($tickets_sold < 1000) {

$available = 1000 - $tickets_sold;

print "$available tickets are available. ",

"How many do you want: ";

$purchase = <STDIN>;

chomp $purchase;

$tickets_sold += $purchase;

}

•
SNM — ver. 1.7 Perl — slide #60

Input with while

• Input is often done using while:

while ($line = <STDIN>) {
〈process this $line〉

}

• This loop will iterate once for each line of input

• will terminate at end of file
SNM — ver. 1.7 Perl — slide #61

The Special $ variable

• Nearly every built-in input function, many input operators, most
statements with input and regular expressions use a special variable
$

• If you don’t specify a variable, Perl uses $

• For example, this while loop reads one line from standard input
at a time, and prints that line:

while (<STDIN>) {

print;

}

• while loop reads one line into $ at each iteration.

• print statement prints the value of $ if you do not tell it to print
anything else.

• See the Perl Reference on page 2 under Conventions
SNM — ver. 1.7 Perl — slide #62

while and the <> operator

• Most input is done using the <> operator with a while loop

• The <> operator processes files named on the command line

– These are called command line parameters or command line
arguments

– If you execute it like this:

angle-brackets.pl

then you have no command line arguments passed to the
program.

– But if you execute it like this:

angle-brackets.pl file_1 file_2 file_3

then the command line has three arguments, which here, hap-
pen to be the names of files.

SNM — ver. 1.7 Perl — slide #63

while and the <> operator — 2

• We most often use the <> operator like this:

while (<>) {
〈statements. . . 〉

}

• This loop does a lot. The pseudocode here shows what it does:

if there are no command line arguments,

while there are lines to read from standard input

read next line into $_

execute 〈statements. . . 〉
else

for each command line argument

open the file

while there are lines to read

read next line from the file into $_

execute 〈statements. . . 〉
close the file

SNM — ver. 1.7 Perl — slide #64

for loop

• The for loop works as in C or Java, except that braces are re-
quired, not optional.

• Example:

for ($i = 0; $i < $max; ++$i) {

$sum += $array[i];

}

• Note that we rarely use this type of loop in Perl. Instead, use the
higher level foreach loop. . .

SNM — ver. 1.7 Perl — slide #65

foreach loop

• The foreach loop iterates over an array or list.

• Most useful looping construct in Perl

• It is so good, that Java 1.5 has borrowed this type of loop to
simplify iterators.

• An example: adds 1 to each element of an array:

foreach my $a (@array) {

++$a;

}

• $a here is a reference to each element of the array, so

• changing $a actually changes the array element.

• You can write “for” or “foreach”, Perl won’t mind.
SNM — ver. 1.7 Perl — slide #66

Iterating over a Hash

• Referring to our example hash in slide 22, we can process each
element like this:

foreach my $key (keys %hash) {
〈process $hash{$key}〉

}

– keys creates a temporary array of all the keys of the hash

– We then looped through that array with foreach.

• More efficient is to use the each built in function, which truly
iterates through the hash:

while (my ($key, $value) = each %hash) {
〈process $key and $value〉

}
SNM — ver. 1.7 Perl — slide #67

Iterating over a Hash in Sorted Order

• Did we process the contents of %hash in alphabetical order in
slide 36?

– No.

– So what do we do if we want to print the elements in order?

∗ In order of key by alphabet? Numerically?

∗ In order of element by alphabet? Numerically?

• Use built in sort function

• see perldoc -f sort

SNM — ver. 1.7 Perl — slide #68

Iterating over a Hash in Sorted Order

• You cannot sort a hash

• . . . but you can read all the keys, sort them, then process each
element in that order:

foreach my $key (sort keys %hash) {
〈process $hash{$key}〉

}

– see perldoc sort

• A reverse sort:

foreach my $key (reverse sort keys %hash) {
〈process $hash{$key}〉

}

– see perldoc reverse

SNM — ver. 1.7 Perl — slide #69

Exit a Loop Early

• Java and C provide break and continue

• Perl provides last and next

my @super_people = qw(Superman Robin

Wonder Woman

Batman Superboy);

foreach my $person (@super_people) {

next if $person eq "Robin";

print "$person\n";

last if $person eq "Batman";

}

• What do you think this program will print?
SNM — ver. 1.7 Perl — slide #70

“Backwards” Statements

• Put an if, while or foreach modifier after a simple statement.

• You can put a simple statement (i.e., with no braces), and put
one of these afterwards:

if EXPR

unless EXPR

while EXPR

until EXPR

foreach EXPR
SNM — ver. 1.7 Perl — slide #71

“Backwards” Statements—Examples

• Examples:

– print $1 if /(\d{9})/;

is equivalent to:

if (/(\d{9})/)

{

print $1;

}

– # print unless this is a blank line:

print unless /^\s*$/;

is equivalent to

if (! /^\s*$/) {

print;

}
SNM — ver. 1.7 Perl — slide #72

Array Operations—push and pop

• The documentation for these is in the very loo–oong document
perlfunc, and is best read with perldoc -f 〈Function〉

push add a value at the end of an array, e.g.,

my @array = (1, 2, 3);

push @array, 4;

now @array contains (1, 2, 3, 4)

– Do perldoc -f push

pop remove and return value from end of an array

my @array = (1, 2, 3);

my $element = pop @array;

now @array contains (1, 2)

and $element contains 3

– Do perldoc -f pop

SNM — ver. 1.7 Perl — slide #73

Array Ops—shift and unshift

shift remove and return value from the beginning of an array, e.g.,

my @array = (1, 2, 3);

my $element = shift @array;

now @array contains (2, 3)

and $element contains 1

• Do perldoc -f shift

unshift add value to the beginning of an array, e.g.,

my @array = (1, 2, 3);

unshift @array, 4;

now @array contains (4, 1, 2, 3)

• Do perldoc -f unshift

SNM — ver. 1.7 Perl — slide #74

split and join

• Do perldoc -f split and perldoc -f join.

• split splits a string into an array:

my $pwline

= "nicku:x:500:500:Nick Urbanik:/home/nicku:/bin/bash";

my ($userid, $pw, $userid_number, $group_id_number,

$name, $home_dir, $shell) = split /:/, $pwline;

• Another application is reading two or more values on the same
input line:

my ($a, $b) = split ’ ’, <STDIN>;

• join is the opposite of split and joins an array into a string:

my $pwline = join ’:’, @pwfields;

SNM — ver. 1.7 Perl — slide #75

Subroutines

• See perldoc perlsub

• Syntax:

sub 〈subroutine˙name〉
{

〈statements. . . 〉
}

SNM — ver. 1.7 Perl — slide #76

Parameters — 1

• Subroutines calls pass their parameters to the subroutine in an
list named @ . It is best to show with an example:

#! /usr/bin/perl -w

use strict;

sub product

{

my ($a, $b) = @_;

return $a * $b;

}

print "enter two numbers on one line: a b ";

my ($x, $y) = split ’ ’, <STDIN>;

print "The product of $x and $y is ",

product($x, $y), "\n";

SNM — ver. 1.7 Perl — slide #77

Parameters — 2

• parameters are passed in one list @ .

• If you are passing one parameter, then the builtin function shift

will conveniently remove the first item from this list, e.g.,

sub square

{

my $number = shift;

return $number * $number;

}
SNM — ver. 1.7 Perl — slide #78

Checking for Errors: die and warn

• System calls can fail; examples:

– Attempt to read a file that doesn’t exist

– Attempt to execute an external program that you do not
have permission to execute

• In Perl, use the die built in function with the or operator to
terminate (or raise an exception) on error:

chdir ’/tmp’ or die "can’t cd to tmp: $!";

• die and warn both print a message to STDERR, but die will raise
a fatal exception, warn will continue

• If no newline at the end of string, die and warn print the program
name and line number where were called

• $! holds the value of the last system error message
SNM — ver. 1.7 Perl — slide #79

Files and Filehandles

• STDIN, STDOUT and STDERR are predefined filehandles

• You can define your own using the open built-in function

• Generally use all upper-case letters by convention

• Example: open for input:

use strict;

open PASSWD, ’<’, "/etc/passwd"

or die "unable to open passwd file: $!";

while (<PASSWD>) {

my ($user) = split /:/;

print "$user\n";

}

close PASSWD;
SNM — ver. 1.7 Perl — slide #80

Open for Writing

• To create a new file for output, use “>” instead of “<” with the
file name.

use strict;

open OUT, ’>’, "data.txt"

or die "unable to open data.txt: $!";

for (my $i = 0; $i < 10; ++$i) {

print OUT "Time is now ",

scalar localtime, "\n";

}

close OUT;

• Note there is no comma after the filehandle in print

• To append to a file if it exists, or otherwise create a new file for
output, use “>>” instead of “>” with the file name.

SNM — ver. 1.7 Perl — slide #81

Executing External Programs

• Many ways of doing this:

– system built-in function

– backticks

– many other ways not covered here.
SNM — ver. 1.7 Perl — slide #82

system

• Example:

my @cmd = (

’useradd’,

’-c’, "\"$name\"",

’-p’, $hashed_passwd,

$id

);

print "@cmd\n";

system @cmd;

• This also works:

system "useradd -c \"$name\" -p \"$hashed_passwd\" $id";

• difference: second form is usually passed to a command shell (such
as /bin/sh or CMD.EXE) to execute, whereas the first form is exe-
cuted directly.

SNM — ver. 1.7 Perl — slide #83

Was system Call Successful?

• Check that the return value was zero:

if (

system("useradd -c \"$name\" -p \"$hashed_passwd\" $id")

!= 0

) {

print "useradd failed";

exit;

}

• This is usually written in Perl more simply using the built in
function die, and the or operator:

system("useradd -c \"$name\" -p \"$hashed_passwd\" $id")

== 0

or die "useradd failed";

SNM — ver. 1.7 Perl — slide #84

Was system Call Successful? — 2

• I usually prefer to call system like this:

my @cmd = (

’useradd’,

’-c’, "\"$name\"",

’-p’, $hashed_passwd,

$id

);

print "@cmd\n";

system @cmd == 0 or die "Can’t execute @cmd";

SNM — ver. 1.7 Perl — slide #85

Backticks: ‘...‘ or qx{...}
• Perl provides command substitution

• Just like in shell programming, where the

• output of the program replaces the code that calls it:

print ‘ls -l‘;

• Note that you can write qx{...} instead:

print qx{df -h /};

– qx// is mentioned in slide 29
SNM — ver. 1.7 Perl — slide #86

See the perl summary

• The Perl summary on the subject web site provides. . . well, a good
summary!

• Called perl.pdf

• Stored in same directory as these notes
SNM — ver. 1.7 Perl — slide #87

Regular Expressions

Regular Expressions are available as part of the programming
languages Java, JScript, Visual Basic and VBScript, JavaScript, C,
C++, C#, elisp, Perl, Python, Ruby, PHP, sed, awk, and in many

applications, such as editors, grep, egrep.

Regular Expressions help you master your data.
— Sales Department.

SNM — ver. 1.7 Perl — slide #88

What is a Regular Expression?

• Powerful.

• Low level description:

– Describes some text

– Can use to:

∗ Verify a user’s input

∗ Sift through large amounts of data

• High level description:

– Allow you to master your data
SNM — ver. 1.7 Perl — slide #89

Regular Expressions as a language

• Can consider regular expressions as a language

• Made of two types of characters:

– Literal characters

∗ Normal text characters

∗ Like words of the program

– Metacharacters

∗ The special characters + ? . * ^ $ () [{ | \
∗ Act as the grammar that combines with the words ac-

cording to a set of rules to create and expression that
communicates an idea

SNM — ver. 1.7 Perl — slide #90

How to use a Regular Expression

How to make a regular expression as part of your

program

SNM — ver. 1.7 Perl — slide #91

What do they look like?

• In Perl, a regular expression begins and ends with ‘/’, like this:
/abc/

• /abc/ matches the string “abc”

– Are these literal characters or metacharacters?

• Returns true if matches, so often use as condition in an if state-
ment

SNM — ver. 1.7 Perl — slide #92

Example: searching for “Course:”

• Problem: want to print all lines in all input files that contain the
string “Course:”

while (<>) {

my $line = $_;

if ($line =~ /Course:/) {

print $line;

}

}

• Or more concisely:

while (<>) {

print if $_ =~ /Course:/;

}

• or even:

print if /Course:/ while <>;

SNM — ver. 1.7 Perl — slide #93

The “match operator” =∼
• If just use /Course:/, this returns true if $ contains the string

“Course:”

• If want to test another string variable $var to see if it contains
the regular expression, use

• $var =~ /regular expression/

• Under what condition is this true?
SNM — ver. 1.7 Perl — slide #94

The “match operator” =∼ — 2

sets the string to be searched:

$_ = "perl for Win32";

is ’perl’ inside $_?

if ($_ =~ /perl/) { print "Found perl\n" };

Same as the regex above.

Don’t need the =~ as we are testing $_:

if (/perl/) { print "Found perl\n" };

SNM — ver. 1.7 Perl — slide #95

/i — Matching without case sensitivity

$_ = "perl for Win32";

this will fail because the case doesn’t match:

if (/PeRl/) { print "Found PeRl\n" };

this will match, because there is an ’er’ in ’perl’:

if (/er/) { print "Found er\n" };

this will match, because there is an ’n3’ in ’Win32’:

if (/n3/) { print "Found n3\n" };

this will fail because the case doesn’t match:

if (/win32/) { print "Found win32\n" };

This matches because the /i at the end means

"match without case sensitivity":

if (/win32/i) { print "Found win32 (i)\n" };

SNM — ver. 1.7 Perl — slide #96

Using !∼ instead of =∼
Looking for a space:

print "Found!\n" if / /;

both these are the same, but reversing the logic with

unless and !~

print "Found!!\n" unless $_ !~ / /;

print "Found!!\n" unless !~ / /;

SNM — ver. 1.7 Perl — slide #97

Embedding variables in regexps

Create two variables containing

regular expressions to search for:

my $find = 32;

my $find2 = " for ";

if (/$find/) \{ print "Found ’$find’\n" };

if (/$find2/) \{ print "Found ’$find2’\n" };

different way to do the above:

print "Found $find2\n" if /$find2/;

• This is the meaning of the “Yes” under “Interpolates” in the table
on slide 29 on the row for m//

SNM — ver. 1.7 Perl — slide #98

The Metacharacters

The funny characters

What they do

How to use them

SNM — ver. 1.7 Perl — slide #99

Character Classes [...]

my @names = ("Nick", "Albert", "Alex", "Pick");

foreach my $name (@names) {

if ($name =~ /[NP]ick/) {

print "$name: Out for a Pick Nick\n";

else {

print "$name is not Pick or Nick\n";

}

}

• Square brackets match one single character
SNM — ver. 1.7 Perl — slide #100

Examples of use of [...]

• Match a capital letter: [ABCDEFGHIJKLMNOPQRSTUVWXYZ]

• Same thing: [A-Z]

• Match a vowel: [aeiou]

• Match a letter or digit: [A-Za-z0-9]
SNM — ver. 1.7 Perl — slide #101

Negated character class: [^...]

• Match any single character that is not a letter: [^A-Za-z]

• Match any character that is not a space or a tab: [^ \t]
SNM — ver. 1.7 Perl — slide #102

Example using [^...]

• This simple program prints only lines that contain characters that
are not a space:

while (<>)

{

print $_ if /[^]/;

}

• This prints lines that start with a character that is not a space:

while (<>) {

print if /^[^]/;

}

• Notice that ^ has two meanings: one inside [...], the other out-
side.

SNM — ver. 1.7 Perl — slide #103

Shorthand: Common Character Classes

• Since matching a digit is very common, Perl provides \d as a short
way of writing [0-9]

• \D matches a non-digit: [^0-9]

• \s matches any whitespace character; shorthand for [\t\n\r\f]

• \S non-whitespace, [^ \t\n\r\f]

• \w word character, [a-zA-Z0-9]

• \W non-word character, [^a-zA-Z0-9]
SNM — ver. 1.7 Perl — slide #104

Matching any character

• The dot matches any character except a newline

• This matches any line with at least 5 characters before the newline:

print if /...../;

SNM — ver. 1.7 Perl — slide #105

Matching the beginning or end

• to match a line that contains exactly five characters before the
newline:

print if /^.....$/;

• the ^ matches the beginning of the line.

• the $ matches at the end of the line
SNM — ver. 1.7 Perl — slide #106

Matching Repetitions: * + ? {n,m}
• To match zero or more:

– /a*/ will match zero or more letter ‘a’, so matches “”, “a”,
“aaaa”, “qwereqwqwer”, or the nothing in front of anything!

• to match at least one:

– /a+/ matches at least one “a”

– /a?/ matches zero or one “a”

– /a{3,5}/ matches between 3 and 5 “a”s.
SNM — ver. 1.7 Perl — slide #107

Example using .*

$_ = ’Nick Urbanik <nicku@nicku.org>’;

print "found something in <>\bs n" if /<.*>/;

Find everything between quotes:

$_ = ’He said, "Hi there!", and then "What\’s up?"’;

print "quoted!\n" if /"[^"]*"/;

print "too much!\n" if /".*"/;

SNM — ver. 1.7 Perl — slide #108

Capturing the Match with (...)

• Often want to scan large amounts of data, extracting important
items

• Use parentheses and regular expressions

• Silly example of capturing an email address:

$_ = ’Nick Urbanik <nicku@nicku.org>’;

print "found $1 in <>\n" if /<(.*)>/;

SNM — ver. 1.7 Perl — slide #109

Capturing the match: greediness

• Look at this example:

$_ = ’He said, "Hi there!", and then "What\’s up?"’;

print "$1\n" if /"([^"]*)"/;

print "$1\n" if /"(.*)"/;

• What will each print?

• The first one works; the second one prints:

"Hi there!", and then "What’s up?

• Why?

• Because *, ?, +, {m,n} are greedy!

• They match as much as they possibly can!
SNM — ver. 1.7 Perl — slide #110

Being Stingy (not Greedy): ?

• Usually greedy matching is what we want, but not always

• How can we match as little as possible?

• Put a ? after the quantifier:

*? Match 0 or more times

+? Match 1 or more times

?? Match 0 or 1 time

{n,}? Match at least n times

{n,m}? Match at least n, but no more than m times

SNM — ver. 1.7 Perl — slide #111

Being Less Greedy: Example

• We can solve the problem we saw earlier using non-greedy match-
ing:

$_ = ’He said, "Hi there!", and then "What\’s up?"’;

print "\$1\n" if /"([^"]*)"/;

print "\$1\n" if /"(.*?)"/;

• These both work, and match only:

Hi there!
SNM — ver. 1.7 Perl — slide #112

Sifting through large amounts of data

• Imagine you need to create computing accounts for thousands of
students

• As input, you have data of the form:

– Some heading on the top of each page

– More headings with other content, including blank lines

– A tab character separates the columns

123456789 H123456(1)

234567890 I234567(2)

345678901 J345678(3)

... ...

987654321 A123456(1)
SNM — ver. 1.7 Perl — slide #113

Capturing the Match: (...)

useradd() is a function defined elsewhere

that creates a computer account with

username as first parameter, password as

the second parameter

while (<>) {

if (/^(\d{9})\t([A-Z]\d{6}\([\dA]\))/) {

my $student_id = $1;

my $hk_id = $2;

useradd($student_id, $hk_id);

}

}
SNM — ver. 1.7 Perl — slide #114

The Substitution Operator s///

• Sometimes want to replace one string with another (editing)

• Example: want to replace Nicholas with Nick on input files:

while (<>)

{

$_ =~ s/Nicholas/Nick/;

print $_;

}
SNM — ver. 1.7 Perl — slide #115

Avoiding leaning toothpicks: /\/\/

• Want to change a filename, edit the directory in the path from,
say /usr/local/bin/filename to /usr/bin/filename

• Could do like this:

– s/\/usr\/local\/bin\//\/usr/\bin\//;

– but this makes me dizzy!

• We can do this instead:

– s!/usr/local/bin/!/usr/bin/!;

• Can use any character instead of / in s///

– For matches, can put m//, and use any char instead of /

– Can also use parentheses or braces:

– s{...}{...} or m{...}
SNM — ver. 1.7 Perl — slide #116

Substitution and the /g modifier

• If an input line contains:

• Nicholas Urbanik read “Nicholas Nickleby”

• then the output is:

• Nick Urbanik read “Nicholas Nickleby”

• How change all the Nicholas in one line?

• Use the /g (global) modifier:

while (<>)

{

$_ =~ s/Nicholas/Nick/g;

print $_;

}
SNM — ver. 1.7 Perl — slide #117

Readable regex: /x Modifier

• Sometimes regular expressions can get long, and need comments
inside so others (or you later!) understand

• Use /x at the end of s///x or m//x

• Allows white space, newlines, comments

• See example on slide 9
SNM — ver. 1.7 Perl — slide #118

Special Vars: Input Record Separator

• When I described the <> operator, I lied a little

• As while (<>) { ...} executes, it iterates once per record,
not just once per line.

• The definition of what a record is is given by the special built-in
variable the Input Record Separator $/

– default value is a newline, so by default read one line at a
time

• But useful alternatives are paragraph mode and the whole-file mode
SNM — ver. 1.7 Perl — slide #119

Paragraph, Whole-file Modes

• To input in paragraph mode, put this line before you read input:

$/ = "";

• Then when you read input, it will be split at two or more newlines

– You could split the fields at the newlines

• To slurp a whole file into one string, you can do:

undef $/;

$_ = <FILE_HANDLE>; # slurp whole file into $_

s/\n[\t]+/ /g; # fold indented lines

• See perldoc -f paragraph, perldoc perlvar and perldoc -f

local for important information on how to localise the change to
$/.

SNM — ver. 1.7 Perl — slide #120

localising Global Variables

• It is not a good idea to globally change $/, (or even $)

– Your program may use other modules, and they may behave
differently if $/ is changed.

– Best to localise the change to $/ (or $, . . .)

• Example localising whole-file mode:

my $content;

open FH, "foo.txt" or die $!;

{

local $/;

$_ = <FH>;

}

close FH;

• For paragraph mode, put: local $/ = "";
SNM — ver. 1.7 Perl — slide #121

One Line Perl Programs

• Called “one liners”

• Just execute on the command line

• See perldoc perlrun

• Example:

• $ perl -pi ’.backup’ -e ’s/Silly/Sensible/g’ fileA fileB

– edits the files fileA and fileB

– makes backups of the original files in fileA.backup and
fileB.backup

– substitutes all instances of “Silly” and replaces them with
“Sensible”.

• Useful for editing configuration files in shell scripts, automating
tasks

SNM — ver. 1.7 Perl — slide #122

References
• Learning Perl, 3rd Edition, Randal L. Schwartz and Tom Phoenix, ISBN 0-596-00132-0, O’Reilly, July

2001.

– The second edition is fine, too. Don’t bother with the first edition, it is too old.

• Perl Reference Guide, Johan Vromans, handed out to each one of you, and will be handed out in the final
examination. Become familiar with it.

• Perl for System Administration: Managing multi-platform environments with Perl, David N. Blank-
Edelman, ISBN 1-56592-609-9, O’Reilly, July 2000.

• Perl Cookbook, 2nd Edition, Tom Christiansen and Nathan Torkington, ISBN 0-596-00313-7, O’Reilly,
August 2003

– The first edition is fine, too.

• Don’t forget perldoc and all the other documentation on your hard disk.

• Object Oriented Perl, Damian Conway, ISBN 1-884777-79-1, Manning, 2000. — A more advanced book
for those wanting to build bigger projects in Perl.

SNM — ver. 1.7 Perl — slide #123

