Perl

A language for Systems and Network Administration and
Management

Nick Urbanik
nicku@nicku.org
A computing department
Copyright Conditions: Open Publication License

(see http://www.opencontent.org/openpub/)

http://www.opencontent.org/openpub/

What is Perl?

What is Perl? slide #2
What is Perl? — 2 slide #3
Compiled and run each time. slide #4
Perlis Evolving. slide #5
Eclectic. slide #6
Regular Expressions. slide #7
Example Problem
Why should T 'learn it? slide #8
The available data. slide #9
Sample data for new courses: slide #10
Problems slide #11
Solution in Perl — 1 slide #12
Solution in Perl — 2 slide #13
Solution in Perl — 3 slide #14
But I can use any other language!. slide #15
Other Solutions may take Longer to Write slide #16
The hello world program slide #17
Variables
Variables. slide #18
$Scalars: slide #19
QATTAY . . . o slide #20
YoHashes. slide #21
Conclusion slide #22
Perl Community
An Overview of Perl slide #23
Where do I get Perl? slide #24
Where do I get Info about Perl?—1................ slide #25
Where do I get Info about Perl?—2. slide #26
CPAN, PPM: Many Modules slide #27
PPM: Perl Package Manager slide #28
Mailing Lists: help from experts slide #29
How to ask Questionson a List. slide #30
The Shabang
Where is Perl on my system? slide #31
How OS knows it’s a Perl program—1.............. slide #32

How OS knows it’s a Perl program—2.............. slide #33

Language Overview

Language Overview slide #34
Language Overview — 2 slide #35
Data Types
Funny Characters $, @, % slide #36
Arrays slide #37
Array Examples. o slide #38
More About Arrays slide #39
List Assignment. slide #40
Even More About Arrays. slide #41
Scalar, List Context. slide #42
Hashes slide #43
Initialising a Hash slide #44
Hash Examples — 1. slide #45
Hash Examples — 2. slide #46
Hash slices slide #47
Another Hash Example slide #48
Hashes are Not Ordered slide #49
Good Practice
Discipline—use warnings slide #50
use strict and Declaring Variables. slide #51
Examples of use strict and Variables. slide #52
Operators, Quoting
Operators and Quoting slide #53
Quoting slide #54
Input, Output
Input and Output slide #55
What is Truth? slide #56
Statements
Statements for Looping and Conditions. slide #57
if Statements. slide #58
unless Statement L. slide #59
whileloop slide #60
Input with while. slide #61
The Special $_variable. slide #62
while and the <> operator slide #63

while and the <> operator —2 slide #64

forloop. slide #65

foreachloop slide #66
Iteration
Iterating overa Hash slide #67
[terating over a Hash in Sorted Order slide #68
[terating over a Hash in Sorted Order slide #69
Other Statements
Exit a Loop Early slide #70
“Backwards” Statements slide #71
“Backwards” Statements—Examples. slide #72
List Operations
Array Operations—push and pop slide #73
Array Ops—shift and unshift.................. slide #74
split and join. L L L. slide #75
Subroutines
Subroutines. slide #76
Parameters — 1 slide #77
Parameters — 2 slide #78
Error Handling
Checking for Errors: dieandwarn slide #79
File and Process I/0O
Files and Filehandles slide #80
Open for Writing. slide #81
Executing External Programs. slide #82
SYSEEM slide #83
Was system Call Successful? slide #84
Was system Call Successful? —2................. slide #85
Backticks: ‘... ¢oraqx{...} slide #86
See the perl summary slide #87
Regular Expressions
Regular Expressions. slide #88
What is a Regular Expression? slide #89
Regular Expressions as a language slide #90
How to use a Regular Expression slide #91
What do they look like?. slide #92
Example: searching for “Course:” slide #93

The “match operator” =~ slide #94

The “match operator” =~ —2.. slide #95

/i — Matching without case sensitivity. slide #96
Using !~ instead of =~ L slide #97
Embedding variables in regexps slide #98
The Metacharacters. slide #99
Character Classes [...]. slide #100
Examples of useof [...1. slide #101
Negated character class: [~...1 slide #102
Example using [*...] slide #103
Shorthand: Common Character Classes. slide #104
Matching any character slide #105
Matching the beginning orend slide #106
Matching Repetitions: * + 7 {n,m} slide #107
Example using .* slide #108
Capturing the Match with (...) slide #109
Capturing the match: greediness. slide #110
Being Stingy (not Greedy): 7. slide #111
Being Less Greedy: Example slide #112
Sifting through large amounts of data slide #113
Capturing the Match: (...) slide #114
The Substitution Operator s/// slide #115
Avoiding leaning toothpicks: /\/\/................ slide #116
Substitution and the /g modifier. slide #117
Readable regex: /x Modifier. slide #118
Other Topics
Special Vars: Input Record Separator slide #119
Paragraph, Whole-file Modes slide #120
localising Global Variables slide #121
One Line Perl Programs. slide #122

References. slide #123

What is Perl?

Perl is a programming language
The best language for processing text
Cross platform, free, open

Microsoft have invested heavily in ActiveState to improve support
for Windows in Perl

Has excellent connection to the operating system

Has enormous range of modules for thousands of application types

SNM — ver. 1.7 Perl — slide #2

What is Perl? — 2

Robust and reliable (has very few bugs)
Supports object oriented programming
Good for big projects as well as small

Java 1.4 has borrowed one of Perl’s best features: reqular expres-
S10MS

Perl has garbage collection
The “duct tape of the Internet”
Easy to use, since it usually “does the right thing”

Based on freedom of choice: “There is more than one way to do
™
it!” — TIMTOWTDI

SNM — ver. 1.7 Perl — slide #3

Compiled and run each time

e Perl is interpreted, but runs about as fast as a Java program
e Software development is very fast

e The Apache web server provides mod perl, allows Perl applica-
tions to run very fast

e Used on some very large Internet sites:

— The Internet Move Database

— Macromedia, Adobe, http://slashdot.org/

SNM — ver. 1.7 Perl — slide #4

Perl is Evolving

e Perl 6 will introduce many great features to make Perl

— easler to use

— Even more widely usable for more purposes

— Even better for bigger projects

SNM — ver. 1.7 Perl — slide #5

Eclectic

e Borrows ideas from many languages, including;:
o C, CH+
Shell

e Lisp

BASIC

e ...cven Fortran

e Many others. ..

SNM — ver. 1.7 Perl — slide #6

http://slashdot.org/

Regular Expressions
e One of the best features of Perl
e A new concept for most of you
e ... But very useful!
e Used to:

— extract information from text
— transform information

— You will spend much time in this topic learning about regular
expressions — see slide 47

SNM — ver. 1.7 Perl — slide #7

Why should I learn it?

e It will be in the final exam!
— Okay, that’s to get your attention, but. ..
e Consider a real-life sys-admin problem:

— You must make student accounts for 1500 students
— TEACHING BEGINS TOMORROW!!

— The Computing Division has a multi-million dollar applica-
tion to give you student enrollment data

— ...but it can only give you PDF files with a strange and
irregular format for now (But Oh, it will be infinitely better
in the future! Just wait a year or two...)

SNM — ver. 1.7 Perl — slide #8

The available data

e Has a variable number of lines before the student data begins
e Has a variable number of columns between different files

e Has many rows per enrolled student

[]
Q
]
D
0
]
=
S
=
oL
@}
N
@
=
0
o
h
g}
&
02
[¢°)
»
]
E
<
~J
0
-+
o
o
]
=
+
9
g
@
]
i}
&
0
N

e There are two formats, both equally peculiar!!!!

SNM — ver. 1.7 Perl — slide #9

Sample data for new courses:

N CHAN Wai Yee F 993175560 H123456(5) 28210216 CHEUNG
10-SEP-01 10-SEP-01 21234567 WAI CHI
SNM — ver. 1.7 Perl — slide #10
Problems

e There is a different number of lines above the student records

e There is a different number of characters within each column from
file to file

e There are many files

e The format can change any time the computing division deter-
mines necessary

SNM — ver. 1.7 Perl — slide #11

Solution in Perl — 1

#! /usr/bin/perl -w
use strict;

my $course;

my $year;
while (<>)
{
chomp;
if (/~\s*Course :\s(\d+)\s/)
{
$course = $1;
undef $year;
next;
¥
SNM — ver. 1.7 Perl — slide #12
. .
Solution in Perl — 2
elsif (m!"\s*Course :\s(\d+)/(\d)\s!)
{
$course = $1;
$year = $2;
next;
}
if (
my ($name, $gender, $student_id, $hk_id)
= n{
\s\s+ # at leaset 2 spaces
(# this matches $name
[A-Z]1+ # family name is upper case
(?:\s[A-Z] [a-z]*)+ # one or more given names
)
\s\s+ # at leaset 2 spaces
([MF1) # gender
\s+ # at least one space
(\a{9h) # student id is 9 digits
\s\s+ # at leaset 2 spaces
([a-zA-Z]\d{6}\([\dA-Z]\)) # HK ID
Ix
)
SNM — ver. 1.7 Perl — slide #13

Solution in Perl — 3

{

print "sex=$gender, student ID = $student_id, ",
"hkID = $hk_id, course = $course, name=$name, ",
defined $year ? "year = $year\n" : "\n";

next;

}
warn "POSSIBLE UNMATCHED STUDENT: $_\n" if m!~\s*\d+\s+!;
¥

SNM — ver. 1.7 Perl — slide #14

But I can use any other language!

e [will give you HK$200 if you are the first person to write a solution
in another language in fewer keystrokes

e Note: the Perl solution given has:

— comments
— Plenty of space to show structure

— ...and handles exceptional situations (i.e., it is robust)
e To claim your $200 from Nick, your solution must have

— similar space for comments
— Similar readability and robustness

— Be written in a general purpose language using ordinary li-
braries

SNM — ver. 1.7 Perl — slide #15

Other Solutions may take Longer to Write

e This program took a very short time to write
e [t is very robust

e For problems like this, Perl is second to no other programming
language.

SNM — ver. 1.7 Perl — slide #16

The hello world program

print "hello world\n"

SNM — ver. 1.7 Perl — slide #17

Variables

e There are three basic types of variable:
e Scalar (can be a number or string or. . .)
e Array (an ordered array of scalars)

e Hash (an unordered array of scalars indexed by strings instead
of numbers)

e Each type distinguished with a “funny character”

SNM — ver. 1.7 Perl — slide #18

$Scalars:

e Start with a dollar sign
e Hold a single value, not a collection
e A string is a scalar, so is a number

e Since Perl is a loosely typed language, a scalar can be an integer,
a floating point number, a character or a string.

— Note that later you will see that a scalar can also hold a
reference to another piece of data, which may also be an
array or hash.

e Examples:

$apple = 2;
$banana = "curly yellow fruit";

SNM — ver. 1.7 Perl — slide #19

@Array
e Starts with a @

e Indexes start at 0, like in C or Java
e Fach entry in an array is a scalar.

— Multidimensional arrays are made by entry of an array being
a reference to another array.

e See slide 19

SNM — ver. 1.7 Perl — slide #20

%Hashes

e Unfamiliar concept to many of you
e Like an array, but indexed by a string

e A data structure like a database

e See slide 22

SNM — ver. 1.7 Perl — slide #21

Conclusion

e Perl is optimised for text and systems administration program-
ming

e Has great portability
e Is strongly supported by Microsoft
e Has three main built-in data types:
e Scalar: starts with $

e Array: starts with @

o Hash: starts with %

SNM — ver. 1.7 Perl — slide #22

An Overview of Perl

A language for Systems and Network
Administration and Management:

An overview of the language

SNM — ver. 1.7 Perl — slide #23

Where do I get Perl?

e For Windows, go to http://www.activestate.com, download the
installer

e For Linux: it will be already installed

e For other platforms: go to http://www.perl.com

e This is a good source of other information about Perl

SNM — ver. 1.7 Perl — slide #24

http://www.activestate.com
http://www.perl.com

Where do I get Info about Perl?—1
e On your hard disk:

— $ perldoc -f (function)

« will look up the documentation for the built-in (function)
(from the documentation perlfunc)

— $ perldoc -q (word)
« will look up (word) in the headings of the FAQ
— $ perldoc perl

* shows a list of much of your locally installed documen-
tation, divided into topics

— ActiveState Perl provides a Programs menu item that links
to online html documentation

SNM — ver. 1.7 Perl — slide #25

Where do I get Info about Perl?—2
o Web sites:
— http://www.perl.com

— http://www.activestate.com

— http://use.perl.org

e Sce slide 64 for a list of books.

SNM — ver. 1.7 Perl — slide #26

http://www.perl.com
http://www.activestate.com
http://use.perl.org

CPAN, PPM: Many Modules

e A very strong feature of Perl is the community that supports it

e There are tens of thousands of third party modules for many, many
purposes:

— Eg. Net::LDAP module supports all LDAP operations,
Net: :LWP provides a comprehensive web client

e Installation is easy:

$ sudo perl -MCPAN -e shell
cpan> install Net::LDAP

e Will check if a newer version is available on the Internet from
CPAN, and if so, download it, compile it, test it, and if it passes
tests, install it.

SNM — ver. 1.7 Perl — slide #27

PPM: Perl Package Manager

e For Windows
e Avoids need for a C compiler, other development tools

e Download precompiled modules from ActiveState and other sites,
and install them:

C:\> ppm install Net::LDAP

e See documentation with ActiveState Perl

SNM — ver. 1.7 Perl — slide #28

Mailing Lists: help from experts

e There are many mailing lists and newsgroups for Perl
e When subscribe to mailing list, receive all mail from list

e When send mail to list, all subscribers receive

e For Windows, many lists at http://www.activestate.com

SNM — ver. 1.7 Perl — slide #29

How to ask Questions on a List

e [receive many email questions from students about many topics

e Most questions are not clear enough to be able to answer in any
way except, “please tell me more about your problem”

e Such questions sent to mailing lists are often unanswered
e Need to be concise, accurate, and clear

e sce also Eric Raymond’s How to Ask Questions the Smart Way at
http://catb.org/~esr/faqs/smart-questions.html

e Search the FAQs first—see slide 13

SNM — ver. 1.7 Perl — slide #30

Where is Perl on my system?

e ActiveState Perl installs perl.exe in C:\Perl\perl.exe
e Linux systems have a standard location for perl at /usr/bin/perl

e On some Unix systems, it may be installed at
/usr/local/bin/perl

SNM — ver. 1.7 Perl — slide #31

http://www.activestate.com
http://catb.org/~esr/faqs/smart-questions.html

How OS knows it’s a Perl program—1

e To run your Perl program, 0S needs to call perl
e How does 0S know when to call Perl?
e Linux, Unix:

— programs have ezecute permission:

$ chmod +x (program)

% 08 reads first 2 bytes of program: if they are “#!” then
read to end of line, then use that as the interpreter
% 08 doesn’t care what your program file is called

— If program file is not in a directory on your PATH, call it like
this:

$./(program)

SNM — ver. 1.7 Perl — slide #32

How OS knows it’s a Perl program—2
e Windows:

— 0s uses the extension of the file to decide what to do (e.g.,
.bat, .exe)

— Your program names end with .pl
e For cross platform support:

— Put this at the top of all your programs:

#! /usr/bin/perl -w

— Name your programs with an extension .pl

SNM — ver. 1.7 Perl — slide #33

Language Overview

e variables: scalars, arrays and hashes — §18-§27
e compiler warnings, use strict; — §26-827

e operators, quoting — §28-§29

e input and output — §30

e statements: — §31

— if...elsif...else and unless statements — §31-§32
— while, for and foreach loops — §32-836

% iterating over arrays and hashes — §36-837

Exit early from a loop with last, and next — §38
— “backwards” statements — §38-§39

SNM — ver. 1.7 Perl — slide #34

Language Overview — 2

e We also will examine:

— subroutines, parameters and return statement — §41-8§42
— array operations — §39-§40

— Error reporting: die and warn — §42

— Opening files — §43-§44

— executing external programs — §44-846

— regular expressions — §47-860

— Special input modes — §61-§62

— One line Perl programs — §63

SNM — ver. 1.7 Perl — slide #35

Funny Characters $, @, %

Variables in Perl start with a funny character
Why?
No problem with reserved words:

can have a variable called $while, and another variable called
@while, and a third called %while.

Can interpolate value into a Double-quoted string (but not a single
quoted string):

my $string = "long";

my $number = 42.42;

print "my string is $string ",
"and my number is $number\n";

SNM — ver. 1.7 Perl — slide #36

Arrays

Define an array like this:
my Qarray = (1, 5, "fifteen");

This is an array containing three elements

The first can be accessed as $array[0], second as $array[1], the
last as $array[2]

Note that since each element is a scalar, it has the $ funny char-
acter for a scalar variable value

In Perl, we seldom use an array with an index—use list processing
array operations: push, pop, shift, unshift, split, grep, map
and iterate over arrays with the foreach statement—see slide 36

— higher level.

SNM — ver. 1.7 Perl — slide #37

Array Examples

e Use the qw// “quote words” operator to help initialise arrays —
see slide 29

e Sece slide 36 for how the foreach loop works.

my @fruit = qw(apple banana mandarin
peach pear plum);
foreach my $fruit (@fruit) {
print "$fruit\n";
}

e Note that these two are equivalent:

my @fruit = qw(apple banana mandarin
peach pear plum);
my @fruit = ("apple", "banana", "mandarin",
Ilpeachll , |Ipearll , Ilplumll) ;

SNM — ver. 1.7 Perl — slide #38

More About Arrays

e Instead of initialiasing the array as in slide 19, we can initialise
the elements one by one:

my @fruit;

$fruit[0] = "apple";
$fruit[1] = "banana";
#

$fruit[5 1 = "plum";
e We can get a slice of an array:

my @favourite_fruit = @fruit[0, 3];
print "@favourite_fruit\n";

— execute the program:

$./slice.pl
apple peach

SNM — ver. 1.7 Perl — slide #39

List Assignment

e We can use a list of scalars whenever it makes some sense, e.g.,
— We can assign a list of scalars to a list of values

e Examples:

my (@, $b, $c) = (1, 2, 3);
my Qarray = (Qa, $b, $c);
my ($d, $e, $f) = Qarray;

SNM — ver. 1.7 Perl — slide #40

Even More About Arrays

e How many elements are in the array? See slide 22
print scalar @fruit, "\n"

e Does the array contain any data? See slide 32
print "empty\n" unless @fruit;

e [s there any data at the index $index?
if (defined $fruit[$index]

and $fruit[$index] eq "apple") {
print "found an apple.\n";

— See perldoc -f defined. Also see perdoc -f exists.

SNM — ver. 1.7 Perl — slide #41

Scalar, List Context

e Each part of a program expects a value to be either scalar or list

e Example: print is a list operator, so if you print something, it
is in list context

e If you look in the Perl Reference, you will see LIST shown as a
parameter to many functions.

— Any value there will be in a list context

e Many built-in functions, and your own functions (see
perldoc -f wantarray), can give a different result in a
scalar or list context

e force scalar context with scalar, e.g.,

print "the time is now ", scalar localtime, "\n";

SNM — ver. 1.7 Perl — slide #42

Hashes

e Hashes are probably new to you
e Like an array, but indexed by a string

e Similar idea was implemented in java.lang.HashTable

e Perl hashes are easier to use

SNM — ver. 1.7 Perl — slide #43

Initialising a Hash

my %hash = (NL => ’Netherlands’,
BE => ’Belgium’);

This creates a hash with two elements

one is $hash{NL}, has value “Netherlands”;

the other is $hash{BE} with value “Belgium”
e The “=>" is a “quoting comma”.

— It is the same as a comma, but it also quotes the string on
its left.

— So you can write the above like this:

my %hash = (’NL’, ’Netherlands’,
’BE’, ’Belgium’)R

but the “=>" operator make it more clear which is the key
and which is the value.

SNM — ver. 1.7 Perl — slide #44

Hash Examples — 1

e As with arrays, you make a new element just by assigning to it:

my %fruit;
$fruit{apple} = "crunchy";
$fruit{peach} = "soft";

e Here, we made two hash elements.

— The keys were "apple" and "peach".

— The corresponding values were "cruchy" and "soft".

e You could print the values like this:
print "$fruit{apple}, $fruit{peach}\n";

prints: crunchy, soft

SNM — ver. 1.7 Perl — slide #45

Hash Examples — 2

e How to see if a hash is empty? See 32
print "empty\n" unless %fruit;

e How to delete a hash element?
delete $fruit{coconut};

e Hashes are often useful for storing counts (see slides 32-34 for
more about while loops):

my J%wordcounts;

while (<>) {
chomp;
++$wordcount{$_1};

3

SNM — ver. 1.7 Perl — slide #46

Hash slices

e We can assign some values to part of a hash:

$score{fred} = 150;
$score{barney} = 100;
$score{dino} = 10;

e We could use a list assignment (see §21):

($score{fred}, $score{barney}, $score{dino})
= (150, 100, 10);

too long. A hash slice makes this easier:
@score{ "fred", "barney", "dino" } = (150, 100, 10);
e We can interpolate this too (see slides 18 and 29):

my Oplayers = qw(fred barney dino);
print "scores are @score{@players}\n";

SNM — ver. 1.7 Perl — slide #47

Another Hash Example

e Often used to keep a count of the number of occurrences of data
read in:

#! /usr/bin/perl -w
use strict;
our %words;
while (<>) {
next unless /\S/; # Skip blank lines
my @line = split;
foreach my $word (@line) {
++$words{$word};
s
¥
print "Words unsorted, in the order they come from the hash:\n\n";
foreach my $word (keys %words) {
printf "%4d %s\n", $words{$word}, $word;
}

e see slide 32 for while loop, slide 34 for while (<>), slide 36 for the foreach statement,

slides 32 and 38 for the unless statement

SNM — ver. 1.7 Perl — slide #48

Hashes are Not Ordered

e A big difference from arrays is that hashes have no order.

e The data in a hash will be available in only an unpredictable order.

e See slide 36 for how to #terate over hash elements

SNM — ver. 1.7 Perl — slide #49

Discipline—use warnings
e Better to let compiler detect problems, not your customer

e Develop your program with all warnings enabled
e FEither:

— put -w as an option to perl when execute the program, i.e.,

x Make the first line of your program:
#! /usr/bin/perl -w
% Or better: put a line:

use warnings;

near the top of your program.

SNM — ver. 1.7 Perl — slide #50

use strict and Declaring Variables

e All programs that are more than a few lines long should have the
pragma use strict;

e This turns on additional checking that all variables are declared,
all subroutines are okay, and that references to variables are “hard
references” — see perldoc strict.

e All variables that you use in your program need to be declared
before they are used with either my or our.

e my defines a local variable that exists only in the scope of the
current block, or outside of a block, in the file.

— See perldoc my.
e our defines a global variable.

— See perldoc our.

SNM — ver. 1.7 Perl — slide #51

Examples of use strict and Variables

Without use strict, a variable just springs into life whenever
you use it.

Problem: a typing mistake in a variable creates a new variable and
a hard-to-find bug!

...80 always start your programs like this:

#! /usr/bin/perl
use warnings;
use strict;

use warnings; enables compile time warnings which help find
bugs earlier—see perldoc warnings

After use strict, it will be an error to use a variable without
declaring it with my or our.

— Most code examples in these notes define variables with my
or our

SNM — ver. 1.7 Perl — slide #52

Operators and Quoting

Perl has all the operators from C (and so Java), in same precedence
Has more operators for strings:

Join strings with a dot, e.g.
print "The sum of 3 and 4 is " . 3 + 4 . "\n";
Quote special characters with backslash, as in C or Java

print "\$value = $value\n";
Can quote all characters using single quotes:

print ’output of \$perl = "rapid";print \$perl; is "rapid"’;

Note that double quotes are okay in single quotes, single quotes
okay in double quotes.

Documentation in perldoc perlop.

SNM — ver. 1.7 Perl — slide #53

Quoting

e Perl has lots of ways of quoting, too many to list here

Meaning Interpolates Slide
20 q// Literal No §28, §18
" qq// Literal Yes §28, §18
e qx// Command Yes §46
O qw// quote word list No §19,838
// m// Pattern match Yes §50
s/// s/// Substitution Yes §59

y/// tr/// Translation No
— See slide 18 for meaning of “interpolate”

e y/// or tr/// works just like the POSIX tr (translate) program
in Linux.

SNM — ver. 1.7 Perl — slide #54

Input and Output

e Read from standard input like this:
my $value = <STDIN>;

e Note that there will be a newline character read at the end

— To remove trailing newline, use chomp:
chomp $value;

— The word STDIN is a predefined filehandle.

* You can define your own filehandles with the open built-
in function.

e write to standard output with the list operator print

— print takes a list of strings:

print "The product of $a and $b is ",
$a * $b, n\nu;

SNM — ver. 1.7 Perl — slide #55

What is Truth?
e Anything that has the string value "" or "0" is false

e Any other value is true.
e This means:

— No number is false except 0
— any undefined value is false

— any reference is true (see perldoc perlref)
e Examples:

becomes the string "0", so false
becomes the string "1", so true
00 # becomes 0, would convert to the string "O", so false
The null string, so false
"0.00" # the string "0.00", neither empty nor "O", so true
undef () # a function returning the undefined value, so false

zor o

SNM — ver. 1.7 Perl — slide #56

Statements for Looping and Conditions

e We look at the following statements in the language:

— if...elsif...else statements — §31
*x The unless statement is similar to the if statement —
§32
— while loops — §32
* processing input using while
x The <> operator
— for loops — §35
— foreach loops — §36

* iterating over arrays and hashes with foreach, while —
§36-837

— Exit early from a loop with last, and next — §38

e We will also look at “backwards statements” — §38-839

SNM — ver. 1.7 Perl — slide #57

if Statements

e if statements work as in C or Java, except:

— braces are required, not optional

— Use elsif instead of else if

e Example:

if ($age > $max) {
print "Too old\n";
} elsif ($age < $min) {
print "Too young\n";
} else {
print "Just right\n";
}

SNM — ver. 1.7 Perl — slide #58

unless Statement

e Same as if statement,

— except that the block is executed if the condition is false:

unless ($destination eq $home {
print "I’m not going home.\n";

}
v/ corresponds to:

unless ((condition)) { if (' ({condition))) {
(statements. ..); (statements. ..);

} }

e else works, but I suggest you don’t use it

— Use if...else instead

SNM — ver. 1.7 Perl — slide #59

while loop

e Just as in C or Java

— ...but braces are required:

while ($tickets_sold < 1000) {
$available = 1000 - $tickets_sold;
print "$available tickets are available. "
"How many do you want: ";
$purchase = <STDIN>;
chomp $purchase;
$tickets_sold += $purchase;

B

SNM — ver. 1.7

Perl — slide #60

Input with while
e Input is often done using while:
while ($line = <STDIN>) {

(process this $line)

e This loop will iterate once for each line of input

e will terminate at end of file

SNM — ver. 1.7

Perl — slide #61

The Special $_ variable

Nearly every built-in input function, many input operators, most
statements with input and reqular expressions use a special variable

$_
If you don’t specify a variable, Perl uses $_

For example, this while loop reads one line from standard input
at a time, and prints that line:

while (<STDIN>) {
print;

while loop reads one line into $_ at each iteration.

print statement prints the value of $_if you do not tell it to print
anything else.

See the Perl Reference on page 2 under Conventions

SNM — ver. 1.7 Perl — slide #62

while and the <> operator
e Most input is done using the <> operator with a while loop
e The <> operator processes files named on the command line

— These are called command line parameters or command line
arguments

— If you execute it like this:

angle-brackets.pl

then you have no command line arguments passed to the
program.

— But if you execute it like this:
angle-brackets.pl file_1 file_ 2 file_3

then the command line has three arguments, which here, hap-
pen to be the names of files.

SNM — ver. 1.7 Perl — slide #63

while and the <> operator — 2

e We most often use the <> operator like this:

while (<>) {
(statements. ..)
}

e This loop does a lot. The pseudocode here shows what it does:

if there are no command line arguments,
while there are lines to read from standard input
read next line into $_
execute (statements...)
else
for each command line argument
open the file
while there are lines to read
read next line from the file into $_
execute (statements...)
close the file

SNM — ver. 1.7 Perl — slide #64

for loop

e The for loop works as in C or Java, except that braces are re-
quired, not optional.

e Example:
for ($i = 0; $i < $max; ++$1i) {

$sum += $arrayl i 1;

e Note that we rarely use this type of loop in Perl. Instead, use the
higher level foreach loop. ..

SNM — ver. 1.7 Perl — slide #65

foreach loop

e The foreach loop iterates over an array or list.
e Most useful looping construct in Perl

e [t is so good, that Java 1.5 has borrowed this type of loop to
simplify iterators.

e An example: adds 1 to each element of an array:

foreach my $a (@array) {
++$a;

by

e $a here is a reference to each element of the array, so

e changing $a actually changes the array element.

e You can write “for” or “foreach”, Perl won’t mind.

SNM — ver. 1.7 Perl — slide #66

Iterating over a Hash

e Referring to our example hash in slide 22, we can process each
element like this:

foreach my $key (keys %hash) {
(process $hash{$key})
}

— keys creates a temporary array of all the keys of the hash

— We then looped through that array with foreach.

e More efficient is to use the each built in function, which truly
iterates through the hash:

while (my ($key, $value) = each %hash) {
(process $key and $value)
}

SNM — ver. 1.7 Perl — slide #67

Iterating over a Hash in Sorted Order

e Did we process the contents of %hash in alphabetical order in
slide 367
— No.
— So what do we do if we want to print the elements in order?
x In order of key by alphabet? Numerically?

* In order of element by alphabet? Numerically?

e Use built in sort function

e see perldoc -f sort

SNM — ver. 1.7 Perl — slide #68

Iterating over a Hash in Sorted Order

e You cannot sort a hash

e ...but you can read all the keys, sort them, then process each
element in that order:

foreach my $key (sort keys %hash) {
(process $hash{$key})
}

— see perldoc sort

e A reverse sort:

foreach my $key (reverse sort keys %hash) {
(process $hash{$key})
}

— see perldoc reverse

SNM — ver. 1.7 Perl — slide #69

Exit a Loop Early

e Java and C provide break and continue

e Perl provides last and next

my @super_people = qw(Superman Robin
Wonder Woman
Batman Superboy) ;
foreach my $person (@super_people) {
next if $person eq "Robin";
print "$person\n";
last if $person eq "Batman";

e What do you think this program will print?

SNM — ver. 1.7 Perl — slide #70

“Backwards” Statements

e Put an if, while or foreach modifier after a simple statement.

e You can put a simple statement (i.e., with no braces), and put
one of these afterwards:

if EXPR
unless EXPR
while EXPR
until EXPR
foreach EXPR

SNM — ver. 1.7 Perl — slide #71

“Backwards” Statements—Examples

e Examples:

— print $1 if /(\d{9})/;
is equivalent to:

if (/(\d{91H)/)
{

print $1;
}

— # print unless this is a blank line:
print unless /" \s*$/;
is equivalent to

if (' /"\sx$/) {

print;

3

SNM — ver. 1.7 Perl — slide #72

Array Operations—push and pop

e The documentation for these is in the very loo—oong document
perlfunc, and is best read with perldoc -f (Function)

push add a value at the end of an array, e.g.,

my Qarray = (1, 2, 3);
push Qarray, 4;
now @array contains (1, 2, 3, 4)

— Do perldoc -f push
pop remove and return value from end of an array

my Qarray = (1, 2, 3);
my $element = pop Qarray;
now @array contains (1, 2)
and $element contains 3

— Do perldoc -f pop

SNM — ver. 1.7 Perl — slide #73

Array Ops—shift and unshift

shift remove and return value from the beginning of an array, e.g.,
my Q@array = (1, 2, 3);
my $element = shift Qarray;

now Qarray contains (2, 3)
and $element contains 1

e Do perldoc -f shift

unshift add value to the beginning of an array, e.g.,

my Qarray = (1, 2, 3);
unshift Qarray, 4;
now Qarray contains (4, 1, 2, 3)

e Do perldoc -f unshift
SNM — ver. 1.7 Perl — slide #74

split and join
e Do perldoc -f split and perldoc -f join.

e split splits a string into an array:

my $pwline
= "nicku:x:500:500:Nick Urbanik:/home/nicku:/bin/bash";
my ($userid, $pw, $userid_number, $group_id_number,
$name, $home_dir, $shell) = split /:/, $pwline;

e Another application is reading two or more values on the same
input line:

my ($a, $b) = split ’ ’, <STDIN>;
e join is the opposite of split and joins an array into a string:

my $pwline = join ’:’, @pwfields;

SNM — ver. 1.7 Perl — slide #75

Subroutines

e See perldoc perlsub

e Syntax:

sub (subroutine name)

{
}

(statements. . .)

SNM — ver. 1.7 Perl — slide #76

Parameters — 1

e Subroutines calls pass their parameters to the subroutine in an
list named @_. It is best to show with an example:

#! /usr/bin/perl -w
use strict;
sub product

{
my ($a, $b) = @_;
return $a * $b;
}
print "enter two numbers on one line: a b ";
my ($x, $y) = split ’> ’, <STDIN>;

print "The product of $x and $y is ",
product($x, $y), "\n";

SNM — ver. 1.7 Perl — slide #77

Parameters — 2

e parameters are passed in one list @_.

e If you are passing one parameter, then the builtin function shift
will conveniently remove the first item from this list, e.g.,

sub square

{
my $number = shift;
return $number * $number;

3

SNM — ver. 1.7 Perl — slide #78

Checking for Errors: die and warn

e System calls can fail; examples:

— Attempt to read a file that doesn’t exist

— Attempt to execute an external program that you do not
have permission to execute

e In Perl, use the die built in function with the or operator to
terminate (or raise an exception) on error:

chdir ’/tmp’ or die "can’t cd to tmp: $!";

e die and warn both print a message to STDERR, but die will raise
a fatal exception, warn will continue

e If no newline at the end of string, die and warn print the program
name and line number where were called

e $! holds the value of the last system error message

SNM — ver. 1.7 Perl — slide #79

Files and Filehandles
e STDIN, STDOUT and STDERR are predefined filehandles

e You can define your own using the open built-in function
e Generally use all upper-case letters by convention

e Example: open for input:

use strict;
open PASSWD, ’<’, "/etc/passwd"
or die "unable to open passwd file: $!";
while (<PASSWD>) {
my ($user) = split /:/;
print "$user\n";
+
close PASSWD;

SNM — ver. 1.7 Perl — slide #80

Open for Writing

e To create a new file for output, use “>” instead of “<” with the
file name.

use strict;
open OUT, ’>’, "data.txt"
or die "unable to open data.txt: $!";
for (my $i = 0; $i < 10; ++$i) {
print OUT "Time is now ",
scalar localtime, "\n";

}
close 0OUT;

e Note there is no comma after the filehandle in print

e To append to a file if it exists, or otherwise create a new file for
output, use “>>” instead of “>” with the file name.

SNM — ver. 1.7 Perl — slide #81

Executing External Programs

e Many ways of doing this:

— systen built-in function
— backticks

— many other ways not covered here.

SNM — ver. 1.7 Perl — slide #82

system

e Example:

my @cmd = (
’useradd’,
’-¢’, "\"$name\"",
’-p’, $hashed_passwd,
$id
)
print "@cmd\n";
system Q@cmd;

e This also works:

system "useradd -c \"$name\" -p \"$hashed_passwd\" $id";

° second form is usually passed to a command shell (such
as /bin/sh or CMD.EXE) to execute, whereas the first form is exe-
cuted directly.

SNM — ver. 1.7 Perl — slide #83

Was system Call Successful?

e Check that the return value was zero:

if (
system("useradd -c \"$name\" -p \"$hashed_passwd\" $id")
=0
) o
print "useradd failed";
exit;
}

e This is usually written in Perl more simply using the built in
function die, and the or operator:

system("useradd -c \"$name\" -p \"$hashed_passwd\" $id")
= 0
or die "useradd failed";

SNM — ver. 1.7 Perl — slide #84

Was system Call Successful? — 2

e [usually prefer to call system like this:

my @cmd = (
’useradd’,
r—¢c? , "\"$11anua\"",
’-p’, $hashed_passwd,

$id
)
print "@cmd\n";
system Qcmd == 0 or die "Can’t execute Qcmd";

SNM — ver. 1.7 Perl — slide #85

Backticks: ‘... or gx{...}

e Perl provides command substitution
e Just like in shell programming, where the

e output of the program replaces the code that calls it:
print ‘ls -1°¢;
e Note that you can write qx{. ..} instead:

print gx{df -h /};

— gx// is mentioned in slide 29

SNM — ver. 1.7 Perl — slide #86

See the perl summary

e The Perl summary on the subject web site provides. . . well, a good
summary!

e Called perl.pdf

e Stored in same directory as these notes

SNM — ver. 1.7 Perl — slide #87

Regular Expressions

Regular Expressions are available as part of the programming
languages Java, JScript, Visual Basic and VBScript, JavaScript, C,
G+, C#, elisp, Perl, Python, Ruby, PHP, sed, awk, and in many
applications, such as editors, grep, egrep.

Regular Expressions help you master your data.

— Sales Department.

SNM — ver. 1.7 Perl — slide #88

What is a Regular Expression?
e Powerful.
e Low level description:

— Describes some text
— Can use to:
x Verify a user’s input

% Sift through large amounts of data

e High level description:

SNM — ver. 1.7 Perl — slide #89

Regular Expressions as a language

e Can consider regular expressions as a language
e Made of two types of characters:

— Literal characters

x Normal text characters

x Like words of the program
— Metacharacters

x The special characters +7 . * ~$ () [{]\

* Act as the grammar that combines with the words ac-
cording to a set of rules to create and expression that
communicates an idea

SNM — ver. 1.7 Perl — slide #90

How to use a Regular Expression

How to make a regular expression as part of your
program

SNM — ver. 1.7 Perl — slide #91

What do they look like?

e In Perl, a regular expression begins and ends with ‘/’; like this:
/abc/

e /abc/ matches the string “abc”
— Are these literal characters or metacharacters?

e Returns true if matches, so often use as condition in an if state-
ment

SNM — ver. 1.7 Perl — slide #92

Example: searching for “Course:”

e Problem: want to print all lines in all input files that contain the
string “Course:”

while (<>) {
my $line = $_;
if ($line =~ /Course:/) {
print $line;

e Or more concisely:

while (<>) {
print if $§_ =" /Course:/;

® Or even.

print if /Course:/ while <>;

SNM — ver. 1.7 Perl — slide #93

The “match operator” =~

e If just use /Course:/, this returns true if $_ contains the string
“Course:”

e If want to test another string variable $var to see if it contains
the regular expression, use

e $var =" /regular expression/

e Under what condition is this true?

SNM — ver. 1.7 Perl — slide #94

The “match operator” =~ — 2

sets the string to be searched:
$_ = "perl for Win32";

is ’perl’ inside $_7
if ($_ =" /perl/) { print "Found perl\n" };

Same as the regex above.

Don’t need the =" as we are testing $_:

if (/perl/) { print "Found perl\n" };

SNM — ver. 1.7 Perl — slide #95
/i — Matching without case sensitivity

$_ = "perl for Win32";

this will fail because the case doesn’t match:
if (/PeRl/) { print "Found PeRl\n" };

this will match, because there is an ’er’ in ’perl’:
if (Jer/) { print "Found er\n" };

this will match, because there is an ’n3’ in ’Win32’:
if (/n3/) { print "Found n3\n" };

this will fail because the case doesn’t match:
if (/win32/) { print "Found win32\n" };

This matches because the /i at the end means
"match without case sensitivity":
if (/win32/1i) { print "Found win32 (i)\n" };

SNM — ver. 1.7 Perl — slide #96

Using !~ instead of =~

Looking for a space:
print "Found!\n" if / /;

both these are the same, but reversing the logic with
unless and !~

print "Found!'!\n" unless $_
print "Found!'\n" unless

'~/ /;
RVAVE

)

SNM — ver. 1.7 Perl — slide #97

Embedding variables in regexps

Create two variables containing

regular expressions to search for:
my $find = 32;

my $find2 = " for ";

if (/$find/) \{ print "Found ’$find’\n" };
if (/$£find2/) \{ print "Found ’$find2’\n" };
different way to do the above:

print "Found $find2\n" if /$find2/;

e This is the meaning of the “Yes” under “Interpolates” in the table
on slide 29 on the row for m//

SNM — ver. 1.7 Perl — slide #98

The Metacharacters

The funny characters
What they do

How to use them

SNM — ver. 1.7 Perl — slide #99

Character Classes [...]

my Onames = ("Nick", "Albert", "Alex", "Pick");
foreach my $name (@names) {
if ($name =~ /[NPlick/) {
print "$name: Out for a Pick Nick\n";
else {
print "$name is not Pick or Nick\n";

e Square brackets match one single character

SNM — ver. 1.7 Perl — slide #100

Examples of use of [...]

e Match a capital letter: [ABCDEFGHIJKLMNOPQRSTUVWXYZ]
e Same thing: [A-Z]

e Match a vowel: [aeiou]

e Match a letter or digit: [A-Za-z0-9]

SNM — ver. 1.7 Perl — slide #101

Negated character class: [~...]

e Match any single character that is not a letter: ["A-Za-z]

e Match any character that is not a space or a tab: [~ \t]

SNM — ver. 1.7 Perl — slide #102

Example using [~...]

e This simple program prints only lines that contain characters that
are not a space:

while (<>)
{
print $_ if /[1/;

e This prints lines that start with a character that is not a space:

while (<>) {
print if /[1/;

}
e Notice that ~ has two meanings: one inside [...], the other out-
side.
SNM — ver. 1.7 Perl — slide #103

Shorthand: Common Character Classes

e Since matching a digit is very common, Perl provides \d as a short
way of writing [0-9]

\D matches a non-digit: [~0-9]

\s matches any whitespace character; shorthand for [\t\n\r\f]

\S non-whitespace, [~ \t\n\r\f]

\w word character, [a-zA-Z0-9_]

e \W non-word character, [“a-zA-Z0-9_]

SNM — ver. 1.7 Perl — slide #104

Matching any character

e The dot matches any character except a newline

e This matches any line with at least 5 characters before the newline:

print if /..... /;

SNM — ver. 1.7 Perl — slide #105

Matching the beginning or end

e to match a line that contains exactly five characters before the
newline:

print if /~..... $/;

e the = matches the beginning of the line.

e the $ matches at the end of the line

SNM — ver. 1.7 Perl — slide #106

Matching Repetitions: * + ? {n,m}
e To match zero or more:
— /ax/ will match zero or more letter ‘a’, so matches 7, “a”,
“aaaa”, “qwerequwqwer”, or the nothing in front of anything!

e to match at least one:

(1))

— /a+/ matches at least one “a
— /a?/ matches zero or one “a”

— /a{3,5}/ matches between 3 and 5 “a”s.

SNM — ver. 1.7 Perl — slide #107

Example using . *

$_ = ’Nick Urbanik <nicku@nicku.org>’;
print "found something in <>\bs n" if /<.*>/;

Find everything between quotes:

$_ = ’He said, "Hi there!", and then "What\’s up?"’;
print "quoted!\n" if /"[""]*"/;

print "too much!\n" if /".x"/;

SNM — ver. 1.7 Perl — slide #108

Capturing the Match with (...)

e Often want to scan large amounts of data, extracting important
items

e Use parentheses and regular expressions

e Silly example of capturing an email address:

$_ = ’Nick Urbanik <nicku@nicku.org>’;
print "found $1 in <>\n" if /<(.*)>/;

SNM — ver. 1.7 Perl — slide #109

Capturing the match: greediness
e Look at this example:
$_ = ’He said, "Hi there!", and then "What\’s up?"’;
print ||$1\nn lf /n ([*u] *) n/;
print "$i\n" if /"(.*x)"/;
e What will each print?
e The first one works; the second one prints:

"Hi there!", and then "What’s up?

e Why?

e Because *, 7, +, {m,n} are greedy!

e They match as much as they possibly can!

SNM — ver. 1.7 Perl — slide #110

Being Stingy (not Greedy): ?

e Usually greedy matching is what we want, but not always
e How can we match as little as possible?

e Put a 7 after the quantifier:

*7 Match 0 or more times
+? Match 1 or more times
77 Match 0 or 1 time

{n,}? Match at least n times

{n,m}? Match at least n, but no more than m times

SNM — ver. 1.7 Perl — slide #111

Being Less Greedy: Example

e We can solve the problem we saw earlier using non-greedy match-
ing:
$_ = ’He said, "Hi there!", and then "What\’s up?"’;
print "\$1\n" if /"([""]1%)"/;
print "\$1\n" if /" (.x7)"/;

e These both work, and match only:

Hi there!

SNM — ver. 1.7 Perl — slide #112

Sifting through large amounts of data

e Imagine you need to create computing accounts for thousands of
students

e As input, you have data of the form:

— Some heading on the top of each page
— More headings with other content, including blank lines

— A tab character separates the columns

123456789 H123456(1)
234567890 1234567(2)
345678901 J345678(3)

987654321 A123456(1)

SNM — ver. 1.7 Perl — slide #113

Capturing the Match: (...)

useradd() is a function defined elsewhere
that creates a computer account with
username as first parameter, password as
the second parameter
while (<>) {
if ¢ /7 (\d{9P\t ([A-ZI\d{6}\ ([\dAI\))/) {
my $student_id = $1;
my $hk_id = $2;
useradd($student_id, $hk_id);
}
}

SNM — ver. 1.7 Perl — slide #114

The Substitution Operator s///

e Sometimes want to replace one string with another (editing)

e Example: want to replace Nicholas with Nick on input files:

while (<>)

{
$_ =" s/Nicholas/Nick/;
print $_;

}

SNM — ver. 1.7 Perl — slide #115

Avoiding leaning toothpicks: /\/\/

e Want to change a filename, edit the directory in the path from,
say /usr/local/bin/filename to /usr/bin/filename

e Could do like this:
— s8/\/usr\/local\/bin\//\/usr/\bin\//;

— but this makes me dizzy!
e We can do this instead:
— s!/usr/local/bin/!/usr/bin/!;
e Can use any character instead of / in s///

— For matches, can put m//, and use any char instead of /

— Can also use parentheses or braces:

—s{...}{...}orm{...}

SNM — ver. 1.7 Perl — slide #116

Substitution and the /g modifier

e If an input line contains:

e Nicholas Urbanik read “Nicholas Nickleby”
e then the output is:

e Nick Urbanik read “Nicholas Nickleby”

e How change all the Nicholas in one line?

e Use the /g (global) modifier:

while (<>)

{
$_ =" s/Nicholas/Nick/g;
print $_;

}

SNM — ver. 1.7 Perl — slide #117

Readable regex: /x Modifier

e Sometimes regular expressions can get long, and need comments
inside so others (or you later!) understand

e Use /x at the end of s///x or m//x
e Allows white space, newlines, comments

e See example on slide 9

SNM — ver. 1.7 Perl — slide #118

Special Vars: Input Record Separator
e When I described the <> operator, I lied a little

e As while (<>) { ...} executes, it :
not just

e The definition of what a record is is given by the special built-in
variable the Input Record Separator $/

— default value is a newline, so by default read one line at a
time

e But useful alternatives are paragraph mode and the whole-file mode

SNM — ver. 1.7 Perl — slide #119

Paragraph, Whole-file Modes

e To input in paragraph mode, put this line before you read input:
$/ = nn ;

e Then when you read input, it will be split at two or more newlines
— You could split the fields at the newlines

e To slurp a whole file into one string, you can do:

undef $/;
$_ = <FILE_HANDLE>; # slurp whole file into $_
s/\nl[\tl+/ /g; # fold indented lines

e See perldoc -f paragraph, perldoc perlvar and perldoc -f
local for important information on how to localise the change to

$/.

SNM — ver. 1.7 Perl — slide #120

localising Global Variables

e It is not a good idea to globally change $/, (or even $_)

— Your program may use other modules, and they may behave
differently if $/ is changed.

— Best to localise the change to $/ (or $_,...)

e Example localising whole-file mode:

my $content;
open FH, "foo.txt" or die $!;

{
local $/;
$_ = <FH>;
}
close FH;

e For paragraph mode, put: local $/ = "";

SNM — ver. 1.7 Perl — slide #121

One Line Perl Programs

e Called “one liners”

Just execute on the command line

See perldoc perlrun

Example:

® $ perl -pi ’.backup’ -e ’s/Silly/Sensible/g’ fileA fileB

— edits the files fileA and fileB

— makes backups of the original files in fileA.backup and
fileB.backup

— substitutes all instances of “Silly” and replaces them with
“Sensible”.

e Useful for editing configuration files in shell scripts, automating

tasks
SNM — ver. 1.7 Perl — slide #122
References
e Learning Perl, 3rd Edition, Randal L. Schwartz and Tom Phoenix, ISBN 0-596-00132-0, O’Reilly, July
2001.

— The second edition is fine, too. Don’t bother with the first edition, it is too old.

e Perl Reference Guide, Johan Vromans, handed out to each one of you, and will be handed out in the final
examination.

o Perl for System Administration: Managing multi-platform environments with Perl, David N. Blank-
Edelman, ISBN 1-56592-609-9, O’Reilly, July 2000.

e Perl Cookbook, 2nd Edition, Tom Christiansen and Nathan Torkington, ISBN 0-596-00313-7, O’Reilly,
August 2003

— The first edition is fine, too.
e Don’t forget perldoc and all the other documentation on your hard disk.

o Object Oriented Perl, Damian Conway, ISBN 1-884777-79-1, Manning, 2000. — A more advanced book
for those wanting to build bigger projects in Perl.

SNM — ver. 1.7 Perl — slide #123

